| THEOREM OF THE DAY Q|

Moreau’s Necklace For mula Take n balls of t different colours, with n; > O ballsof colour i,i =1,...,t.
Then the number of distinct arrangements of the balls, in alineor in acircle, is given, respectively, by: @

. n! . 1 n/d
L : — . lar: = here D =
inear (nl,---,nt) R Circular nc“Z[:)(nl/d,...,nt/d) ¢(d), where gcdng, ... ny)
and ¢ isthe Euler totient function (see below left).
TheEuler totient function 000000000000000000000000

For a positive integen, the Euler totient
function, denotedp(n), is defined to be the
number of positive integers not exceedimg
which are coprime ta. If the distinct primesg
dividing n are py, p2, ... pm (We may write
piln,i = 1,...,m), then the value ofp(n)

may be calculated explicitly as

(P21 (P2-1)  (pm—1
WD_”( Py )( P2 ) ( Pm )

For example,

D

The two
lines of 24 balls,
12 red balls, 8 blue, and
4 yellow, are diferent linear
arrangements. Joined in a circle,
however, they are the same, rotated
arrangement. Such cyclic permutatio
are known in combinatorial circles a
‘necklaces’. (As well as rotation-
al symmetry, we may consider
reflections, giving a yet
smaller number of
‘bracelets’.)

©(18) = p(2x 3%) = 18x % X g = 6.

The first few values are tabulated below:

n|123456789 10 11
oM|[1T 12242646 4 10

the (local) maximum values occurring at the
primes.

Counting necklaces withballs (beads) ankicolours is a well-studied problem
which may be solved using the Orbit Counting Lemma or, moreepingly,
by applying Blya—Redfield enumeration to derive the appropriate nasithte
counting polynomial. Charles Moreau’s formula, publisimed 872, provides
a direct calculation of individual cdkcients in this polynomial.

Web link: mathlesstraveled.cqo@01712/12/
Further reading: Notes on Counting: An Introduction to Enumerative
== _ ) Combinatorics by Peter J. Cameron, Cambridge University Press, 2017.
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In our example there ame = 24 balls withn; = 12,n, = 8 and

Nz = 4. The multinomial coﬁcient(lzzg"‘) gives the number of

linear arrangements as a little ove8 k 10°.
For the necklace (circular) count our sum is over the digsor
{1,2,4} of D = gcd(12 8, 4) = 4:

2_14 {(12,2 g, 4) A (6,142, 2) w2 (3, 2’ 1) ¢(4)} ’

giving roughly 56 x 10°. The first term in the sum accounts
for almost all these necklaces: to a first approximation vee ar
removing circular symmetries just by dividing the lineaunb

by the number of balls. Conversely, notice that we can make
the linear count a special case of the necklace count by g@din
single ball of a new colourn,,; = 1, in any of the 24 possible
positions. This has theffect of placing a ‘cut point’ in our cir-
cle, making it a line. Correspondingly, in the above caltata
the gcd is reduced to 1, and the summation reduces to a sing
multinomial.

The entries in the-th row of Pascal’s triangle, beginning with
the binomial cofficient (), sum to 2; generalising, the sum of
all multinomial codficients dividingninto t parts ist". So if we
sum our necklace formula over all possible choices aflours

for our n balls, including cases where some of theare zero,
we will get the number oh-ball necklaces having or fewer
colours: (¥n) dega(d)t”/d. Forn = 4 andt = 3, this evaluates
to 24, which you can list, with a littleféort! (Click (@) icon, top right,

for answer. Created by Robin Whitty fowww.theoremoftheday.or
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