THEOREM OF THE DAY

Minkowski’s Convex Body Theorem Let $L(B) = \{ Bx \mid x \in \mathbb{Z}^n \}$ be the integer lattice whose points are all integer-weighted sums of the n linearly independent basis vectors forming B, an $n \times n$ matrix over \mathbb{R}. Let S be a convex subset of \mathbb{R}^n, closed under negation, whose volume exceeds $2^n|\det(B)|$. Then S contains a nonzero point of $L(B)$.

The lattice on the left consists of all points (x,y) where x and y are integers summing to an even number; it is defined by the two column vectors $(1,1)$ and $(2,0)$. The shaded parallelogram defined by these two basis vectors is called the fundamental parallelepiped, denoted $P(B)$, and its volume (which, in two dimensions is just area) is synonymous with $|\det(B)|$, the (absolute value of the) determinant of the basis matrix. For our vectors this volume is given as 2 units2.

The set S, depicted as a curved region, fails to be convex because some straight lines joining pairs of points in S pass outside of S: technically, for some $x_1, x_2 \in S$ not every sum $tx_1 + (1-t)x_2$, for $0 \leq t \leq 1$, is a point of S. It also fails to be closed under negation: $x \in S$ does not guarantee $-x \in S$. So Minkowski’s Theorem does not apply to S; and indeed, if S were translated right or left it might fail to contain a non-zero lattice point. However, we can apply:

Blichfeldt’s Theorem If S is any measurable set whose volume exceeds $|\det(B)|$ then there exist distinct points x_1 and x_2 in S such that $x_1 - x_2$ is a lattice point in $L(B)$.

To prove this, observe that sufficient copies of the fundamental parallelepiped $P(B)$, moved to lattice points as shown above right, will cover the set S. If their intersections with S are translated to the origin (see left) then two must overlap, because $\text{vol}(S) > |\det(B)| = \text{vol}(P(B))$. So some point z lies in the two distinct copies of $P(B)$ translated from, say, lattice points z_1 and z_2 (see right). Then $x_1 = z + z_1$ and $x_2 = z + z_2$ lie in S and $x_1 - x_2 = z + z_1 - (z + z_2)$, being a difference of lattice points, is itself a lattice point.

Minkowski’s Theorem can now be proved as a corollary: let $\hat{S} = \frac{1}{2}S$ (halving in each of the n dimensions). Then $\text{vol}(\hat{S}) = 2^{-n}\text{vol}(S) > |\det(B)|$, so Blichfeldt supplies $x_1, x_2 \in \hat{S}$ with $x_1 - x_2 \in L(B)$. Then, by definition of \hat{S}, closure under negation, and convexity, $2x_1, 2x_2, -2x_2, \frac{1}{2}(2x_1) + \left(1 - \frac{1}{2}\right)(-2x_2)$ are all in S, and the last of these, being equal to $x_1 - x_2$, is a nonzero lattice point.

Hermann Minkowski’s 1889 theorem is the foundation of his “geometry of numbers”. Hans Blichfeldt’s theorem dates from 1914.

Web link: ocw.mit.edu/courses/mathematics, course 18.409: an Algorithmists Toolkit, lectures 18 and 19.