THEOREM OF THE DAY

Vaughan Pratt's Theorem Primality testing is in NP.
Registered Certificate of Primality

N	Prime factors of $\mathrm{N} \mathbf{- 1}$	c	$\mathrm{c}^{\mathrm{N}-1} \bmod \mathrm{~N}=1$	$\mathbf{c}^{(\mathrm{N}-1) / \mathrm{p}} \bmod \mathrm{N} \neq 1$, for prime factors p of $\mathrm{N}-1$
2444789759	2, 1222394879	11	\checkmark	$11^{1222394879} \equiv 2444789758,{ }^{11^{2}} \equiv 121 \sqrt{ }$
1222394879	2, 611197439	19	\checkmark	$19^{611197439} \equiv 1222394878, \downarrow 19^{2} \equiv 361 \checkmark$
611197439	2, 305598719	13	\checkmark	$13^{305598719} \equiv 611197438, ~ \sqrt{13^{2}} \equiv 169$ V
305598719	2, 152799359	37	\checkmark	$37^{152799359} \equiv 305598718, \sqrt{37^{2}} \equiv 1369{ }^{\text {V }}$
152799359	2, 76399679	11	\checkmark	${ }_{11} 76399679$ \# $152799358,{ }^{\text {, }}{ }_{11^{2}} \equiv 121 \checkmark$
76399679	2, 38199839	11	\checkmark	${ }_{11} 38199839 \equiv 76399678,{ }^{11^{2} \equiv 121 \checkmark}$
38199839	2, 19099919	13	\checkmark	$13^{19099919} \equiv 38199838, \sqrt{13^{2}} \equiv 169 \checkmark$
19099919	2, 37, 258107	11	\checkmark	$11^{9549959} \equiv 19099918,11^{516214} \equiv 7921368, \ 11^{74} \equiv 6206319$ ل
258107	2, 23, 31, 181	2	$\sqrt{ }$	$2^{129053} \equiv 258106,2^{11222} \equiv 67746, \sqrt{2^{8326}} 71301 \backslash 2^{1426} \equiv 57204$

It is hereby confirmed that
$2,444,789,759$ has been certified prime.
Signed:

Date: 1 September, 1975
The Lucas test (not to be confused with the Lucas-Lehmer test) says: an integer $N \geq 2$ is prime if and only if an integer can be found such that $c^{N-1} \bmod N=1$ and, for all prime factors p of $N-1, c^{(N-1) / p} \bmod N \neq 1$. Then c certifies the primality of N but the prime factors may need certifying in their turn. Here, 2444789759 terminates a so-called Cunningham chain of length 8: $N-1=2 \times p$ for a prime p, and this repeats seven times. Nevertheless, eventually small primes factors are reached (say 3-digits or less) which may be certified directly from a dictionary.
$\mathbf{N P}$ is the class of those decision (Yes-No) problems for which a Yes-certificate may stated and checked in an amount of time which is a polynomial in the input size. For a candidate prime $N \geq 2$, a $N o$ is certified by any proper prime factor of N but a Yes seems to require an exhaustive proof that no such factor exists. Pratt showed that certification by repeated Lucas-Lehmer testing could be achieved using no more than about $4 \log N$ bits and checked in no more than about $\log ^{3} N$ steps.

Web link: maths-people.anu.edu.au/~brent/pd/AdvCom2t.pdf. The Cunningham chain I found at primerecords.dk/.
Further reading: Algorithms and Complexity, 2nd edition by Herbert S. Wilf, A K Peters, 2003.

