THEOREM OF THE DAY

Vaughan Pratt's Theorem Primality testing is in NP.

Registered Certificate of Primality

N	Prime factors of N – 1	c	c ^{N-1} mod N = 1	$c^{(N-1)/p} \mod N \neq 1$, for prime factors p of N - 1
2444789759	2, 1222394879	11	\checkmark	$11^{1222394879} = 2444789758, \checkmark 11^2 = 121\checkmark$
1222394879	2, 611197439	19	\checkmark	$19^{611197439} = 1222394878, \checkmark 19^2 = 361 \checkmark$
611197439	2, 305598719	13	\checkmark	$13^{305598719} = 611197438, 13^2 = 169$
305598719	2, 152799359	37	~	$37^{152799359} = 305598718, \checkmark 37^2 = 1369$
152799359	2, 76399679	11	\checkmark	$11^{76399679} = 152799358, 11^2 = 121$
76399679	2, 38199839	11	~	$11^{38199839} = 76399678, 11^2 = 121$
38199839	2, 19099919	13	✓	$13^{19099919} = 38199838, \checkmark 13^2 = 169 \checkmark$
19099919	2, 37, 258107	11	\checkmark	$11^{9549959} = 19099918$, $11^{516214} = 7921368$, $11^{74} = 6206319$
258107	2, 23, 31, 181	2	~	$2^{129053} = 258106, 2^{11222} = 67746, 2^{8326}, 71301, 2^{1426} = 57204$
It is hereby confirmed that 2,444,789,759 has been certified prime. Signed: Date: 1 September, 1975				

The Lucas test (not to be confused with the Lucas-Lehmer test) says: an integer $N \ge 2$ is prime if and only if an integer c can be found such that $c^{N-1} \mod N = 1$ and, for all prime factors p of N - 1, $c^{(N-1)/p} \mod N \ne 1$. Then c certifies the primality of N but the prime factors may need certifying in their turn. Here, 2444789759 terminates a so-called *Cunningham chain* of length 8: $N - 1 = 2 \times p$ for a prime p, and this repeats seven times. Nevertheless, eventually small primes factors are reached (say 3-digits or less) which may be certified directly from a dictionary.

NP is the class of those decision (Yes-No) problems for which a Yes-certificate may stated and checked in an amount of time which is a polynomial in the input size. For a candidate prime $N \ge 2$, a *No* is certified by any proper prime factor of *N* but a Yes seems to require an exhaustive proof that no such factor exists. Pratt showed that certification by repeated Lucas-Lehmer testing could be achieved using no more than about $4 \log N$ bits and checked in no more than about $\log^3 N$ steps.

Web link: wwwmaths.anu.edu.au/~brent/pd/AdvCom2t.pdf. Pratt's original, eminently readable, 1975 article (introducing the term 'certificate' in this context) is here: boole.stanford.edu/pub/SucCert.pdf. The Cunningham chain I found at primerecords.dk/.

Further reading: Algorithms and Complexity, 2nd edition by Herbert S. Wilf, A K Peters, 2003.

