
THEOREM OF THE DAY
The Polygonal Number Theorem For any integer m > 1, every non-
negative integer n is a sum of m+2 polygonal numbers of order m+2.

For a positive integerm, the polygonal numbers of orderm + 2 are the values

Pm(k) =
m
2

(

k2
− k

)

+ k, k ≥ 0.

The first case,m = 1, gives thetriangular numbers, 0, 1, 3, 6, 10, . . .. A general diagrammatic
construction is illustrated on the right for the casem = 3, thepentagonal numbers: a regular
(m + 2)−gon is extended by adding vertices along ‘rays’ of new vertices from (m + 1) vertices with
1, 2, 3, . . . additional vertices inserted between each ray.
How can we find a representation of a givenn in terms of polygonal numbers of a given orderm+2?
How do we discover, say, thatn = 375 is the sum 247+70+35+22+1 of five pentagonal numbers?
What follows a piece of pure sorcery from the celebrated number theorist Melvyn B. Nathanson!

1. Assume thatm ≥ 3. Choose an odd positive integerb such that b = 29

(1) We can writen ≡ b + r (mod m), 0 ≤ r ≤ m − 2; and n = 375≡ 29+ 1 (mod 3)

(2) If a = 2

(

n − b − r
m

)

+ b, an odd positive integer by virtue of (1), then a = 259

b2
− 4a < 0 and 0< b2 + 2b − 3a + 4. (∗) 841− 1036< 0, 0 < 841+ 58− 777+ 4

2. InvokeCauchy’s Lemma: If a and b are odd positive integers satisfying (∗) then there
exist nonnegative integers s, t, u, v such that

a = s2 + t2 + u2 + v2 and b = s + t + u + v. 259= 132 + 72 + 52 + 42 and 29= 13+ 7+ 5+ 4

3. From the definition ofa in step 1(2), writen =
m
2

(a − b) + b + r

=
m
2

(s2
− s) + s + . . . +

m
2

(v2
− v) + v + r. 375= 247+ 70+ 35+ 22+ 1

How can we be sure (1) and (2) in step 1 are possible? We appeal to the quadratic formula, applied to the
two quadratics in (∗) (plotted for our example on the left). The roots specify an interval [b1, b2] from which to
select the value ofb. If b2 − b1 ≥ 4, then the interval must contain consecutive odd integers:together they will
supply enough modulo values for the equation in 1(1) to be satisfied. Nowb2 − b1 ≥ 4 is guaranteed for large
enoughn, specificallyn ≥ 120m. Luckily for all smaller values ofn the theorem is known from tabulations
made in the 19th century. Step 1 also needsm ≥ 3; this also is aleady established as explained below.

A typical piece of unproven genius from Pierre de Fermat in 1638. Lagrange provedm = 2 in
1770 (the Four Squares Theorem). Gauss provedm = 1 in 1796 (hisEureka Theorem). Finally
in 1815 came Cauchy’s proof ofm ≥ 3, dramatically shortened in 1987 by Nathanson!

Web link: www.fields.utoronto.ca/programs/scientific/11-12/Mtl-To-numbertheory/ (11.45 on Sunday October 9)
Further reading: Additive Number Theory, The Classical Bases, by Melvyn B Nathanson, Springer, 1996.
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