

THEOREM OF THE DAY

Distribution of local maxima in random samples Let $\pi = (\pi_1, \dots, \pi_n)$ be a permutation of $\{1, \dots, n\}$ and let k be a positive integer. The k-local maxima of π are defined to be the maximum values taken by length k subsequences of π : i.e., the set $\{\max(\pi_i, \dots, \pi_{i+k-1}), 1 \le i \le n-k+1\}$. Denote by $f_k(n, m)$ the number of permutations π having exactly m distinct k-local maxima. Let $v_k(x, y)$ be the generating function for the f_k defined as $v_k(x, y) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} f_k(i, j) x^i y^j / i!$. Then the discrete distribution of the

probabilities $Pr(\pi \text{ has m local maxima}), m = 0, \dots, n, \text{ is given by}$

$$\left. \frac{1}{n!} \frac{\partial^n v}{\partial x^n} \right|_{x=0}.$$

Adapted from an image by Dougsim at en.wikipedia.org/wiki/Change_ringing

Moreover, $v_k(x, y)$ satisfies the partial differential equation

$$\frac{\partial v}{\partial x} = yv^2 + (1 - y)\left(1 + 2x + \dots + (k - 1)x^{k - 2}\right),\tag{1}$$

with boundary conditions $v_k(0, y) = \frac{\partial v}{\partial x}\Big|_{x=0} = 1$.

This theorem is about a statistic for random samples: move a length k 'window' along a sample of size n. How often does the maximum value in the window change? The question is adequately answered in terms of k-local maxima in permutations, illustrated on the right using a collection of permutations found in change ringing of church bells. For the boxed permutation two-thirds down, for example, there are three updates, indicated by the red bars, corresponding to window 1 ([152]), window 3 ([237]) and window 6 ([468]). How likely (for a random permutation of $\{1,\ldots,8\}$) would 3 updates be? The theorem derives the answer from the coefficient of y^3 when x is set to zero in the 8-th partial derivative $\partial^8 v/\partial x^8$. The differential equation (1), for k=3, is $\partial v/\partial x=yv^2+(1-y)(1+2x)$ and this gives an ingenious method for finding the higher derivatives. Differentiate both sides: $\partial^2 v/\partial x^2 = 2yv\partial v/\partial x + 2(1-y)$. Setting x=0 and using the boundary conditions, $\partial^2 v/\partial x^2|_{x=0}=2y\times 1\times 1+2(1-y)=2$. Differentiate again: $\partial^3 v/\partial x^3=2y(\partial v/\partial x)^2+2yv\partial^2 v/\partial x^2$. At x=0, this evaluates to $\partial^3 v/\partial x^3|_{x=0}=2y\times 1^2+2y\times 1\times 2=6y$. If we continue this process we eventually find that $\partial^8 v/\partial x^8|_{x=0}=2016y^2+18624y^3+17376y^4+2112y^5+192y^6$. The coefficients sum to 8! and the probability that a random permutation of $\{1,\ldots,8\}$ has three 3-local maxima is $18624/8!\approx 0.46$. In our illustration 3-local maxima certainly do not constitute nearly half of the permutations, but this is not surprising since the permutations in change ringing are generated in a very systematic manner!

A simple formula for the mean number of k-local maxima can be derived by differentiating once again but with respect to y: this multiplies each term by the number of local maxima it is counting. So then setting y=1 gives the usual formula for expected value. And happily the partial derivative, which is $\frac{1}{n!} \frac{\partial}{\partial y} \left(\frac{\partial^n v}{\partial x^n} \right) \Big|_{x=0,y=1}$, can be shown to simplify to (2n-k+1)/(k+1).

This theorem was published in 1957 by T.L. Austin, R.E. Fagen, T.A. Lehrer and W. F. Penney.

Web link: www.informit.com/articles/article.aspx?p=2243840.

1. Lamma 2. Theorem 3. Grotley **Further reading:** Concrete Mathematics by R.L. Graham, D.E. Knuth and O. Patashnik, Addison Wesley, 1994.

