THEOREM OF THE DAY

Cramer's Rule Let X be an $n \times n$ matrix. Denote by $M_{i,j}$ the determinant of the $(n-1) \times (n-1)$ matrix obtained by deleting row i and column j of X. Let C be the $n \times n$ matrix whose ij-th entry is $(-1)^{i+j}M_{i,j}$. Then in the matrix product of X with the transpose of C all diagonal entries are equal to the determinant of X and all other entries are zero. That is, we have the identity $XC^T = I_n \det X$.

Cramer's Rule is an elegant explicit way to specify the inverse of a nonsingular matrix. But we will apply it to demonstrate a curious geometrical fact. From the plot on the right define X to be the following 4×4 matrix:

<i>X</i> =	(1	-1	1	-1)
	1	1	1	1	
	x_0	x_1	x_2	<i>x</i> ₃	ŀ
	y_0	y_1	<i>y</i> ₂	<i>y</i> ₃	J

Now vector algebra tells us that the values of $M_{1,j}$, for j = 1, 2, 3, 4 are twice the areas of the triangles on each subset of three of the points A, B, C, D. For example,

$$M_{1,1} = 1 \times (x_2 y_3 - x_3 y_2) - 1 \times (x_1 y_3 - x_3 y_1) + \times (x_1 y_2 - x_2 y_1),$$

which is twice the area, denote this $\frac{1}{2}|BCD|$, of triangle *BCD* (the deleted column is the missing point). Now consider the product of Cramer's Rule:

$XC^T =$	$\begin{pmatrix} 1\\ 1\\ x_0\\ y_0 \end{pmatrix}$	-1 1 x_1 y_1	$ \begin{array}{c} 1\\ 1\\ x_2\\ y_2 \end{array} $	$\begin{pmatrix} -1 \\ 1 \\ x_3 \\ y_3 \end{pmatrix}$	×	$M_{1,1} = M_{1,2} = M_{1,3} = M_{1,4}$) =	=	det X 0 0 0	$0 \\ \det X \\ 0 \\ 0 \\ 0$	$0 \\ 0 \\ \det X \\ 0$	$0 \\ 0 \\ 0 \\ det X$).
	(<i>Y</i> 0	y_1	y_2	<i>y</i> ₃ <i>)</i>	($-M_{1,4}$)	l	0	0	0	det X)

The zero entry in row 2, column 1 tells us that $M_{1,1} - M_{1,2} + M_{1,3} - M_{1,4} = 0$. That is, the alternating sum of the four triangle areas above right is zero. This is not a surprise because it is equivalent to saying that |BCD| + |ABD| = |ACD| + |ABC|. However, the zero entry in row 3, column 1 says that we still get zero if the horizontal coordinate of each triangle's missing point multiplies the triangle's area. Thus, $x_0|BCD| + x_2|ABD| = x_1|ACD| + x_3|ABC|$. This is perhaps more surprising. (Note that the first row of our matrix has been added merely to turn the 3 × 4 triangle area calculation into a 4 × 4 matrix; however, you may discover that it offers some additional geometric information.)

Gabriel Cramer, a Swiss mathematician contemporary with Leonhard Euler, invented this rule in the form of a method for writing down explicit solutions of sets of linear equations. It first appeared as an appendix to Cramer's influential 1750 text *Introduction à l'analyse des lignes courbes algébraique* and has remained textbook material every since.

Web link: www.m-hikari.com/ams/ams-2014/ams-133-136-2014/index.html: see "Old and New Proofs of Cramers Rule" by Maurizio Brunetti. Further reading: *Introduction to Linear Algebra* by Gilbert Strang, Wellesley-Cambridge Press, 6th edition, 2023, chapter 5.

Created by Robin Whitty for www.theoremoftheday.org ³⁴