THEOREM OF THE DAY

Cramer's Rule Let X be an $n \times n$ matrix. Denote by $M_{i, j}$ the determinant of the $(n-1) \times(n-1)$ matrix obtained by deleting row i and column j of X. Let C be the $n \times n$ matrix whose $i j$-th entry is $(-1)^{i+j} M_{i, j}$. Then in the matrix product of X with the transpose of C all diagonal entries are equal to the determinant of X and all other entries are zero. That is, we have the identity $X C^{T}=I_{n} \operatorname{det} X$.

Cramer's Rule is an elegant explicit way to specify the inverse of a nonsingular matrix. But we will apply it to demonstrate a curious geometrical fact. From the plot on the right define X to be the following 4×4 matrix:

$$
X=\left(\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1 \\
x_{0} & x_{1} & x_{2} & x_{3} \\
y_{0} & y_{1} & y_{2} & y_{3}
\end{array}\right) .
$$

Now vector algebra tells us that the values of $M_{1, j}$, for $j=1,2,3,4$ are twice the areas of the triangles on each subset of three of the points A, B, C, D. For example,

$$
M_{1,1}=1 \times\left(x_{2} y_{3}-x_{3} y_{2}\right)-1 \times\left(x_{1} y_{3}-x_{3} y_{1}\right)+\times\left(x_{1} y_{2}-x_{2} y_{1}\right)
$$

which is twice the area, denote this $\frac{1}{2}|B C D|$, of triangle $B C D$ (the deleted column is the missing point). Now consider the product of Cramer's Rule:

The zero entry in row 2 , column 1 tells us that $M_{1,1}-M_{1,2}+M_{1,3}-M_{1,4}=0$. That is, the alternating sum of the four triangle areas above right is zero. This is not a surprise because it is equivalent to saying that $|B C D|+|A B D|=|A C D|+|A B C|$. However, the zero entry in row 3, column 1 says that we still get zero if the horizontal coordinate of each triangle's missing point multiplies the triangle's area. Thus, $x_{0}|B C D|+x_{2}|A B D|=x_{1}|A C D|+x_{3}|A B C|$. This is perhaps more surprising. (Note that the first row of our matrix has been added merely to turn the 3×4 triangle area calculation into a 4×4 matrix; however, you may discover that it offers some additional geometric information.)

Gabriel Cramer, a Swiss mathematician contemporary with Leonhard Euler, invented this rule in the form of a method for writing down explicit solutions of sets of linear equations. It first appeared as an appendix to Cramer's influential 1750 text Introduction à l'analyse des lignes courbes algébraique and has remained textbook material every since.

Web link: www.m-hikari.com/ams/ams-2014/ams-133-136-2014/index.html: see "Old and New Proofs of Cramers Rule" by Maurizio Brunetti. Further reading: Introduction to Linear Algebra by Gilbert Strang, Wellesley-Cambridge Press, 6th edition, 2023, chapter 5.

