
THEOREM OF THE DAY
Schur’s Commuting Matrices Bound Over any field, a collection of linearly independent, mutually
commuting n× n matrices can have cardinality at most⌊n2/4⌋ + 1.

The casen = 2 is already instructive, even restricting to upper-
triangular matrices, where all elements below the main diago-

nal are zero. Thus, supposeA =

(

a b
0 c

)

andB =

(

α β

0 γ

)

commute. So

(

a b
0 c

)

×

(

α β

0 γ

)

=

(

α β

0 γ

)

×

(

a b
0 c

)

.

The diagonal entries areaα andcγ for both products (since
field elements commute), so we need only compare the top
right-hand entries, and this comparison rearranges to give:

b(α − γ) = β(a− c). Easy!A =

(

1 −1
0 2

)

andB =

(

3 1
0 2

)

,

for example, satisfy this requirement. The identity matrix

I2 =

(

1 0
0 1

)

automatically qualifies: it commutes with every-

thing. But doesn’t this give a total of 3> ⌊22/4⌋+1 commuting
matrices? It does, but they are not linearly independent, since
the linear equation 4I2 − A− B = 0 is satisfied.

For generaln, construct a set of commuting matrices as follows: considerann×n ‘template’ matrix

(

0 X
0 0

)

, whereX is n/2×n/2, if n is even, and is (n+1)/2×(n−1)/2,

if n is odd. ThenX has⌊n2/4⌋ entries. Choose one of these entries to have value 1 and the rest zero, and observe that these choices give linearly independent matrices
whose pairwise products are all the zero matrix. Together with the identity matrixIn this gives⌊n2/4⌋ + 1 linearly independent commuting matrices.
In our illustration, two commuting matrices,X andY, are interpreted as adjacency matrices of two graphs, depicted on the same vertex set as, respectively, red and blue
edges. Thus, the 1s in the first row ofX specify red edges from vertex 1 to vertices 2 and 3, and so on. Symmetric matrices have been chosen since if there is an edge
from vertexu to vertexv then the same edge joins vertexv to vertexu. Now the fact thatXY = YX, is interpreted in the graph in terms of two-edge walks between
pairs of vertices: the number of such walks taking a red edge and then a blue edge is the same as the number taking a blue edge and then a red. For example, there is
one red-then-blue walk from 2 to 3: this is red edge 21 followed by blue edge 13. So there must be just one blue-then-red walk: it is blue edge 23 followed by the red
loop 33. We can go further: commutativity means, say,XYX2 = X3Y. So the number of red-blue-red-red walks from 2 to 3 is the same as the number of red-red-red-blue
walks (the matrix product tells us this number is 7).

Issai Schur proved this upper bound, and described the collections which achieved it, for matrices of hypercomplex numbers
(complex, quaternions, etc, much studied at the end of the 19th century; essentially his proof worked for algebraicallyclosed
fields). Nathan Jacobson extended this to arbitrary fields in1994.

Web link: math.stackexchange.com/questions/2687791
Further reading: Computational Linear and Commutative Algebraby Martin Kreuzer and Lorenzo Robbiano, Springer, 2016.
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