Take a set \(S \). Combine its elements using a binary operation \(* \). Mathematicians have identified properties which \(* \) should obey in order to give a ‘realistic’ arithmetic:

Closed: if \(x \) and \(y \) are in \(S \) then \(x * y \) should be too.

Identity: a unique element of \(S \), which we may as well call ‘1’, should be found to be inactive under \(* \): that is, \(1 * x = x * 1 = x \), for any \(x \).

Inverses: \(* \) should be able to reduce anything to 1: given \(x \) it should have an inverse \(y = x^{-1} \) for which \(x * y \) and \(y * x \) both give value 1.

Associative law: bracketing should not affect \(* \), that is \((x * y) * z \) and \(x * (y * z) \) give the same result.

Commutative law: order should not affect \(* \); that is \(x * y \) and \(y * x \) both give the same result.

For a division ring we take two operations ‘+’ and ‘\(\times \)’. Addition should obey all the above, although we call the identity ‘0’ instead of ‘1’. Multiplication is allowed not to be commutative: in the multiplication table above, \(b \times c = f \) but \(c \times b = d \); if ‘\(\times \)’ does commute the division ring is called a field. Meanwhile, ‘+’ and ‘\(\times \)’ must interact realistically: 0 \(\times \) anything gives 0 (so it is customary to omit the first row and column from the ‘\(\times \)’ table); \(0^{-1} \) will not exist; and a final property should hold:

Distributive law: we can expand brackets: \(x \times (y + z) = x \times y + x \times z \) and \((x + y) \times z = x \times z + y \times z \). E.g. using the above tables, \((a + b) \times c = d \times c = b\) and \(a \times c + b \times c = g + f = b \).

It is nearly the case that the above tables define a non-commutative (i.e. for ‘\(\times \)’) division ring which is nevertheless obviously finite! In fact they define a so-called near-field, failing in just one respect to obey the hypothesis of our theorem: ‘+’ and ‘\(\times \)’ are not left-distributive. E.g. \(b \times (c + d) = b \times e = 1 \) but \(b \times c + b \times d = f + c = a \).

The surprising discovery that cardinality might influence multiplication was made in 1905 simultaneously by Joseph Wedderburn and Leonard Dickson both, at the time, at the University of Chicago. Our order 9 near-field was also discovered by Dickson in 1905.

Web link: www.theoremoftheday.org/Docs/WedderburnShamil.pdf. The Dickson near-field construction, based on the Galois field GF(9) and having multiplicative group isomorphic to the quaternions, is described at en.wikipedia.org/wiki/Near-field_(mathematics).

Created by Robin Whitty for www.theoremoftheday.org.