THEOREM OF THE DAY

Wedderburn's Little Theorem Any finite division ring is commutative.

+	0	1	а	b	с	d	e	f	g	×	1	а	b	с	d	е	f	g	
0	0	1	а	b	с	d	е	f	g	1	1	a	b	с	d	е	f	g	
1	1	a	0	с	d	b	f	g	е	а	а	1	е	g	f	b	d	с	
a	а	0	1	d	b	с	g	е	f	b	Ь	е	а	f	с	1	g	d	
b	b	с	d	е	f	g	0	1	a	с	с	g	d	а	е	f	Ь	1	
с	с	d	b	f	g	е	1	а	0	d	d	f	g	b	а	с	1	е	
d	d	b	с	g	е	f	а	0	1	е	е	b	1	d	g	а	С	f_{\pm}	
е	е	f	g	0	1	a	b	С	d	f	f	d	с	е	1	g	а	Ь	
f	f	g	е	1	а	0	с	d	b	g	g	с	f	1	b	d	е	а	
g	g	е	f	a	0	1	d	b	с	Operations + and × defined on $S = \{0, 1, a, b, c, d, e, f, g\}$. Cell shading is to facilitate inspection merely									

Take a set S. Combine its elements using a binary operation *. Mathematicians have identified properties which * should obey in order to give a 'realistic' arithmetic: **Closed:** if x and y are in S then x * y should be too.

Identity: a unique element of S, which we may as well call '1', should be found to be inactive under *: that is, 1 * x = x * 1 = x, for any x.

Inverses: * should be able to reduce anything to 1: given x it should have an inverse $y = x^{-1}$ for which x * y and y * x both give value 1.

Associative law: bracketing should not affect *, that is (x * y) * z and x * (y * z) give the same result.

Commutative law: order should not affect *: that is x * y and y * x both give the same result.

For a division ring we take two operations '+' and '×'. Addition should obey all the above, although we call the identity '0' instead of '1'. Multiplication is allowed not to be commutative: in the multiplication table above, $b \times c = f$ but $c \times b = d$; if '×' does commute the division ring is called a **field**. Meanwhile, '+' and '×' must interact realistically: $0 \times$ anything gives 0 (so it is customary to omit the first row and column from the '×' table); 0^{-1} will not exist; and a final property should hold: **Distributive law:** we can expand brackets: $x \times (y + z) = x \times y + x \times z$ and $(x + y) \times z = x \times z + y \times z$. E.g. using the above tables, $(a + b) \times c = d \times c = b$ and

 $a \times c + b \times c = g + f = b.$

It is nearly the case that the above tables define a non-commutative (i.e. for '×') division ring which is nevertheless obviously finite! In fact they define a so-called **near-field**, failing in just one respect to obey the hypothesis of our theorem: '+' and '×' are not *left*-distributive. E.g. $b \times (c+d) = b \times e = 1$ but $b \times c + b \times d = f + c = a$.

The surprising discovery that cardinality might influence multiplication was made in 1905 simultaneously by Joseph Wedderburn and Leonard Dickson both, at the time, at the University of Chicago. Our order 9 near-field was also discovered by Dickson in 1905.

Web link: www.theoremoftheday.org/Docs/WedderburnShamil.pdf. The Dickson near-field construction, based on the Galois field GF(9) and having multiplicative group isomorphic to the quaternions, is described at en.wikipedia.org/wiki/Near-field_(mathematics). Further reading: *Topics in Algebra* by I.N. Herstein, John Wiley & Sons, 2nd edition, 1975.

