THEOREM OF THE DAY

Integration By Parts If $u(x)$ and $v(x)$ are differentiable functions of a real variable x, then

More generally we can, in the limit, write $\ln (1+t)=\int_{0}^{t} \frac{1}{1+x} d x=\frac{t}{1+t}+\frac{t^{2}}{2(1+t)^{2}}+\frac{t^{3}}{3(1+t)^{3}}+\ldots$, and this converges provided $|t|<|t+1|$.
Integration by parts is often taught as a 'trick' for extracting antiderivatives of stubborn functions: $e^{x} \sin x, \sqrt{1+4 x^{2}}$, etc. But its origins, which are generally traced back to Brook Taylor in 1715, lie in evaluating infinite summations.
Web link: Ian Bruce's annotated translation of Taylor: www. 17 centurymaths.com/contents/taylorscontents.htm; see Prop. XI. Theor. IV.
Further reading: Analysis by its History by Ernst Hairer and Gerhard Wanner, Springer, 1996.

