THEOREM OF THE DAY

Cardano's Cubic Formula Given a cubic polynomial $F(x) = x^3 + px + q$, let Z denote the square root $\sqrt{(q/2)^2 + (p/3)^3}$. Let A and B be cube roots of -q/2+Z and -q/2-Z, respectively, satisfying AB = -p/3.

If the curve $y = x^3 + ax^2 + bx + c$ is shifted to the right by a/3 via the substitution x := X - a/3 the effect is to put the equation into the form $y = X^3 + pX + q$, for some p and q. Setting y = 0 is now the same as asking for the points at which the curve $y = X^3$ meets the straight line y = -pX - q. If p is positive, this straight line will slope negatively (top-left to bottom right) and there will be only one real-number solution. It took the genius of Cardano to realise that, when p was negative, the values of A + B in his theorem could become sums of conjugate complex numbers, giving three real-number solutions. For example, the cubic $y = x^3 - 6x^2 - 9x + 14$ becomes

 $y = X^3$ 250 150 y = 21X + 20-2 2 -50 B_2° -150 v = -14X | -300 B_2

 $A_0 = \frac{5}{2} + i \frac{\sqrt{3}}{2}$

$$B_0 = \frac{5}{2} - i \frac{\sqrt{3}}{2}$$

$$B_1 = -\frac{1}{2} + i \frac{3\sqrt{3}}{2}$$

$$B_2 = -2 - i\sqrt{3}$$

Gerolamo Cardano

 $y = X^3 - 21X - 20$ under the substitution x := X - (-6)/3. The cube roots of -q/2 + Z and -q/2 - Z (found via De Moivre's Theorem) are plotted topright as shown (the A_i and B_i , respectively). The conjugate pairs (A_0, B_0) , (A_1, B_2) and (A_2, B_1) satisfy $A_i B_i = -p/3$ and add to give real roots 5, -1 and -4 of $X^3 - 21X - 20$ (and we shift left by -2 to get roots 7, 1 and -2 for the original equation). By contrast, for the equation $y = X^3 + 14X + 300$, the roots A_i and B_i (bottom-right) do not combine in conjugate pairs. Although three pairs satisfy $A_i B_i = -p/3$ only $A_0 \approx 0.6968$ and $B_0 = -6 - A_0$ sum to give a real root of X = -6.

Then A + B is a solution of the equation F(x) = 0.

Web link: capone.mtsu.edu/jhart/cardan.pdf

Further reading: Why Beauty is Truth: the History of Symmetry by Ian Stewart, Basic Books, 2008, chapter 4.

(1501-1576) has been accused of stealing from Nicolo Tartaglia (1500–1557) the solution of the cubic. However, a solution had already been published by Scipione del Ferro (1465-1526). Both solutions were acknowledged by Cardano who moreover surpassed them with the above formula which alone addressed the 3-real-number case. And

it was perhaps Rafael Bombelli (1525–1572) who first really understood the role

