Polygons and a hash function

Robin Whitty LSBU Maths Study Group 24 August 2023

Bisecting convex polygons

A straight line equation for convex polygon bisection...

Pairs of bisecting lines

- 1, 4
- 2, 5
- 3, 5
- 4, 6
- 5, 1
- 6, 3

We want to take consecutive pairs of bisecting lines, forming a sector of the circle.

We want to avoid sectors which properly contain a vertex.

So we want to take the lines in an ordering which avoids this

Ordering bisecting line pairs

Represent the lines as matrix entries. The matrix lives on a torus, so it wraps round horizontally and vertically.

Connect the entries in a cycle using the following rules

- 1. a column of 1s is joined vertically
- a 1 with a vacant cell below is joined to the entry diagonally opposite the cell to its right.

The result is the ordering we want:

Finding the bisecting lines

An Application

We may triangulate a polygon on n vertices by adding n-3 diagonals, as illustrated on the right. We would like to test if some straight line joining a triangle vertex to the opposite polygon edge bisects the area of the polygon. In our diagram this requires a value of $t \in [0, 1]$ for which the poly-

gons v_0 , $(1 - t)v_0 + tv_1$, v_3 , v_4 and $(1 - t)v_0 + tv_1$, v_1 , v_2 , v_3 have equal area.

An application of the shoelace formula gives:

$$t = \frac{A_{co} - A_{cl}}{2A_{\Lambda}}$$

 A_{co} =area counter-clockwise from and including middle triangle A_{cl} =area clockwise from middle triangle A_{Λ} =area of middle triangle

Conventions/notation

Polygons are oriented anticlockwise.

Vertices labelled $1, \dots, n$.

Triangle from vertex i to opposite edge p, p+1 is denoted Δ_{ip}

There are n-2 triangles opposite, say, vertex 3 which are

 $\Delta_{34}, \Delta_{35}, \dots, \Delta_{3,3+n-2}$ taken mod n. (The mod arithmetic, since I'm insisting on counting from 1, is $i \to 1 + (i-1 \bmod n)$.

The bisection point on the (extended) edge p, p+1 opposite vertex i is denoted t_{ip} .

Proceeding systematically

An application of the shoelace formula gives:

$$t = \frac{A_{co} - A_{cl}}{2A_{\Lambda}}$$

 A_{co} =area counter-clockwise from and including middle triangle A_{cl} =area clockwise from middle triangle A_{Λ} =area of middle triangle

In what follows we take triangles round our polygon in a rather counter-intuitive ordering so as to simplify notation.

$$t_{15} = \frac{\Delta_{15} - (P - \Delta_{15})}{2\Delta_{15}} = 1 - \frac{P}{2\Delta_{15}}$$

$$t = \frac{P - \Delta_{12} - \Delta_{12}}{2\Delta_{13}}$$

 $A_{co} = P - \Delta_{12}$

$$t_{14} = \frac{\Delta_{15} + \Delta_{14} - (P - \Delta_{15} - \Delta_{14})}{2\Delta_{14}} = \frac{\Delta_{15} + \Delta_{14} + (2t_{15}\Delta_{15} - \Delta_{15}) + \Delta_{14}}{2\Delta_{14}} = 1 + t_{15}\frac{\Delta_{15}}{\Delta_{14}}$$

$$t_{13} = \frac{\Delta_{15} + \Delta_{14} + \Delta_{13} - (P - \Delta_{15} - \Delta_{14} - \Delta_{13})}{2\Delta_{13}} = \frac{\Delta_{15} + \Delta_{14} + \Delta_{13} + (2t_{14}\Delta_{14} - \Delta_{15} - \Delta_{14}) + \Delta_{13}}{2\Delta_{13}} = 1 + t_{14}\frac{\Delta_{14}}{\Delta_{13}}$$

• •

Zigzagging

$$t_{12} = \frac{P - 0}{2\Delta_{12}}$$

$$t_{26} = 1 - \frac{P}{2\Delta_{26}} = 1 - \frac{2t_{12}\Delta_{12}}{2\Delta_{26}}$$

So:
$$t_{15} = 1 - \frac{P}{2\Delta_{15}}$$

$$t_{14} = 1 + t_{15} \frac{\Delta_{15}}{\Delta_{14}}$$

$$t_{13} = 1 + t_{14} \frac{\Delta_{14}}{\Delta_{13}}$$

And similarly: $t_{12} = 1 + t_{13} \frac{\Delta_{13}}{\Delta_{12}}$

$$t_{26} = 1 - t_{12} \frac{\Delta_{12}}{\Delta_{26}}$$

And similarly: $t_{25} = 1 + t_{26} \frac{\Delta_{26}}{\Delta_{25}}$ $t_{24} = 1 + t_{25} \frac{\Delta_{25}}{\Delta_{24}}$

• •

All t values from a matrix of triangle areas

$$t_{15} = 1 - \frac{P}{2\Delta_{15}}$$

$$t_{14} = 1 + t_{15} \frac{\Delta_{15}}{\Delta_{14}}$$

$$t_{13} = 1 + t_{14} \frac{\Delta_{14}}{\Delta_{13}}$$

$$t_{12} = 1 + t_{13} \frac{\Delta_{13}}{\Delta_{12}}$$

$$t_{26} = 1 - t_{12} \frac{\Delta_{12}}{\Delta_{26}}$$
 $t_{31} = 1 - t_{23} \frac{\Delta_{23}}{\Delta_{31}}$ $t_{42} = 1 - t_{34} \frac{\Delta_{34}}{\Delta_{42}}$

$$t_{25} = 1 + t_{26} \frac{\Delta_{26}}{\Delta_{25}}$$

$$t_{24} = 1 + t_{25} \frac{\Delta_{25}}{\Delta_{24}}$$

$$t_{23} = 1 + t_{24} \frac{\Delta_{23}}{\Delta_{23}}$$

$$t_{31} = 1 - t_{23} \frac{\Delta_{23}}{\Delta_{31}}$$

$$t_{14} = 1 + t_{15} \frac{\Delta_{15}}{\Delta_{14}}$$
 $t_{25} = 1 + t_{26} \frac{\Delta_{26}}{\Delta_{25}}$ $t_{36} = 1 + t_{31} \frac{\Delta_{31}}{\Delta_{36}}$

$$t_{24} = 1 + t_{25} \frac{\Delta_{25}}{\Delta_{24}}$$
 $t_{35} = 1 + t_{36} \frac{\Delta_{36}}{\Delta_{35}}$

$$t_{23} = 1 + t_{24} \frac{\Delta_{24}}{\Delta_{23}}$$
 $t_{34} = 1 + t_{35} \frac{\Delta_{35}}{\Delta_{34}}$

	1	2	3	4	5	6
1		Δ_{12}	Δ_{13}	Δ_{14}	Δ_{15}	
2			Δ_{23}	Δ_{24}	Δ_{25}	Δ_{26}
3	Δ_{31}			Δ_{34}	Δ_{35}	Δ_{36}
4	Δ_{41}	Δ_{42}			Δ_{45}	Δ_{46}
5	Δ_{51}	Δ_{52}	Δ_{53}			Δ_{56}
6	Δ_{61}	Δ_{62}	Δ_{63}	Δ_{64}		

$$t_{42} = 1 - t_{34} \frac{\Delta_{34}}{\Delta_{42}}$$

A curious property of the areas triangle

For $n \geq 4$, it has zero
determinant. In fact, all but three
of its eigenvalues is zero. One of
the nonzero eigenvalues is the
area of the polygon.
area of the polygon.

	1	2	3	4	5	6
1		Δ_{12}	Δ_{13}	Δ_{14}	Δ_{15}	
2			Δ_{23}	Δ_{24}	Δ_{25}	Δ_{26}
3	Δ_{31}			Δ_{34}	Δ_{35}	Δ_{36}
4	1	Δ_{42}			Δ_{45}	Δ_{46}
5	Δ_{51}	Δ_{52}	Δ_{53}			Δ_{56}
6	Δ_{61}	Δ ₆₂	Δ_{63}	Δ_{64}		

Note negative area for triangle lying outside polygon

Eigenvalues: $0.16, -8 \pm \frac{i}{2} \sqrt{917}$

The characteristic polynomial

The characteristic polynomial for matrix A is the determinant of A - qI where q is an indeterminate.

Its roots are the eigenvalues of the matrix:

$$\det(A - qI) = 0$$

- $\Rightarrow A qI$ has rank less than n
- \Rightarrow the linear equations (A qI)x = 0 have a nontrivial solution vector (eigenvector) x.

$$\begin{bmatrix} 0 & 11 & 5 & 0 \\ 0 & 0 & -\frac{9}{2} & \frac{41}{2} \\ 11 & 0 & 0 & 5 \\ \frac{41}{2} & -\frac{9}{2} & 0 & 0 \end{bmatrix} \qquad \text{det}(A-qI) = q^4 + \frac{149}{4}q^2 - 4692q$$
 Eigenvalues (roots): $0,16, -8 \pm \frac{i}{2}\sqrt{917}$

$$\det(A - qI) = q^4 + \frac{149}{4}q^2 - 4692q$$

Eigenvalues (roots):
$$0.16, -8 \pm \frac{i}{2}\sqrt{917}$$

The characteristic polynomial puzzle

Characteristic polynomial of areas triangle for n-vertex polygon with area P is $\det(A - qI) = q^{n-3}(q - P)(q + P/2 \pm \alpha i)$

What is α ?

$$sw := \begin{bmatrix} 0 & 8 & 0 & 1 & 6 & 0 \\ 0 & 0 & 4 & -3 & 6 & 8 \\ 8 & 0 & 0 & -1 & 0 & 8 \\ 4 & 4 & 0 & 0 & 3 & 4 \\ 8 & 2 & -1 & 0 & 0 & 6 \\ 8 & 8 & -4 & 3 & 0 & 0 \end{bmatrix}$$
$$q^6 - 96 q^4 - 1935 q^3$$

 $0, 0, 0, 15, -\frac{15}{2} - \frac{1\sqrt{291}}{2}, -\frac{15}{2} + \frac{1\sqrt{291}}{2}$

$$sw := \begin{bmatrix} 0 & \frac{17}{2} & 0 \\ 0 & 0 & \frac{17}{2} \\ \frac{17}{2} & 0 & 0 \end{bmatrix}$$

$$q^{3} - \frac{4913}{8}$$

$$\frac{17}{2}, -\frac{17}{4} - \frac{171\sqrt{3}}{4}, -\frac{17}{4} + \frac{171\sqrt{3}}{4}$$

$$\left(q - \frac{17}{2}\right) \left(q + \frac{17}{4} \pm 17\frac{\sqrt{3}}{4}i\right)$$

$$q(q-15)\left(q+\frac{15}{2}\pm\frac{\sqrt{291}}{2}i\right)$$

En passant, zero area triangles

We calculate the t_{ij} values by our feed-forward method:

$$t_{15} = 1 - \frac{P}{2\Delta_{15}}$$

$$t_{14} = 1 + t_{15} \frac{\Delta_{15}}{\Delta_{14}}$$

$$t_{13} = 1 + t_{14} \frac{\Delta_{14}}{\Delta_{13}}$$

$$t_{12} = 1 + t_{13} \frac{\Delta_{13}}{\Delta_{12}}$$

What happens if Δ_{13} , say, is zero?

A trick

What happens if Δ_{13} , say, is zero?

$$t_{15} = 1 - \frac{P}{2\Delta_{15}}$$

$$t_{14} = 1 + t_{15} \frac{\Delta_{15}}{\Delta_{14}}$$

$$t_{13} = 1 + t_{14} \frac{\Delta_{14}}{x}$$

$$t_{12} = 1 + t_{13} \frac{x}{\Delta_{12}} = 1 + \left(1 + t_{14} \frac{\Delta_{14}}{x}\right) \frac{x}{\Delta_{12}}$$
$$= 1 + \frac{x}{\Delta_{12}} + t_{14} \frac{\Delta_{14}}{\Delta_{12}}$$

Now let $x \to 0$:

$$t_{12} = 1 + 0 + t_{14} \frac{\Delta_{14}}{\Delta_{12}} = 1 + t_{14} \frac{\Delta_{14}}{\Delta_{12}}$$

The effect is: we just 'skip over' zero entries in the areas matrix

Plotting bisecting lines

We can now plot what I claim is a set of bisecting chords which, taken in the order traced in the toroidal matrix, define a partition of the polygon into sectors

Easier examples to visualise

