Bisecting convex polygons

The problem I would really like to solve:

Given any simple connected polygon P (specified in terms of its coordinates) and a direction vector \mathbf{u} , write down the equation of the straight line bisecting the area of P in the direction of \mathbf{u} .

Which we know can be done...

... by the intermediate value theorem...

Area 'above' line = 0

Area 'above' line = A (total area)

Area 'above' line = A/2

A restricted problem

Given any simple connected polygon P, specified in terms of **rational** coordinates (x_i, y_i) , and a direction vector \mathbf{u} , specified as a **rational number** (its slope), write down the equation of the straight line bisecting the area of P in the direction of \mathbf{u} .

The shoelace formula

Given any simple connected polygon P, specified in terms of coordinates (x_i, y_i) , the area A of P is given by:

$$\frac{1}{2}(x_0y_1 - x_1y_0 + \dots + x_{n-1}y_0 - x_0y_{n-1}).$$

IVT and constructiveness

The shoelace formula says our restricted problem is solved by a straight line equation with rational coefficients.

But IVT will not necessarily produce this equation, only a rational solution arbitrarily close to it.

Area problems in the rationals are not necessarily straightforward! E.g. (Don Zagier) the 'simplest' right triangle with area 157 is:

Triangles: the easy case

Bisecting straight line:

$$r = u\lambda + \begin{cases} (1-m)A + (1-t)mC + tmB & \text{for tilt on } BC \\ (1-m)B + (1-t)mA + tmC & \text{for tilt on } CA, \\ (1-m)C + (1-t)mB + tmA & \text{for tilt on } AB \end{cases}$$
 where $t = \left(1 + \sqrt{\frac{2-w}{1+w}}\right)^{-1}$, $m = 1/\sqrt{2}$,

and w is unique solution in [0,1] to tilt equations.

Bisection envelopes (triangles)

Bisection envelopes (polygons)

Bisection-convex: any bisecting straight line intersects the curve in exactly two points

Bisection envelopes

Noah Fechtor-Pradines

Involve, Vol. 8 (2015) 307-328

Proposition 3.3. The bisection envelope \mathcal{B} of a polygon \mathcal{S} is the union of a finite number of sections of hyperbolas. Let the set of all asymptotes of these hyperbolas be H, and let the set of all lines that contain the sides of \mathcal{S} be G. Then $H \subseteq G$, with equality if no two lines in G are parallel.

Strictly bisection-convex curves

We now restrict the class of curves S to be studied.

Definition 2.2. Define S and L as above. We say that S is *bisection convex* if for all θ , l_{θ} intersects S in exactly two points. Alternatively, for every point A on S, there exists a unique point B also on S such that the line AB bisects the interior area of S.

We also create a tighter restriction.

Definition 2.3. Define S and L as before. We say that S is *strictly bisection convex* if it is bisection convex and for all θ , l_{θ} is not tangent to S. At any point where there are two tangents to S—one from each side—the l_{θ} through that point is distinct from both tangents.

Henceforth, unless otherwise stated, it is assumed that S is strictly bisection convex.

Bisection envelopes

That IVT 2-pancakes issue again...

Define $A(\theta)$ and $B(\theta)$ to be the endpoints of the bisecting chord in direction θ , with $B(\theta) = A(\theta + \pi)$. We distinguish between $A(\theta)$ and $B(\theta)$ by demanding that for each point $Q \neq A(\theta)$, $B(\theta)$ on the bisecting chord, the vector $A(\theta) - Q$ points in positive direction θ and the vector $B(\theta) - Q$ points in positive direction $\theta + \pi$.

Proposition 2.4. Assume that S is bisection convex. Then $A(\theta)$ varies continuously with θ .

Proof. First, we note that any two bisecting chords must intersect in the interior of S, for if they did not, the interior of S would be split into three regions, one of which would have zero area, which does not make sense.

From this, we have $\lim_{\epsilon \to 0} l_{\theta+\epsilon} = l_{\theta}$, as the limit of the intersection point $l_{\theta+\epsilon} \cap l_{\theta}$ is bounded. This also implies that the limit as $\epsilon \to 0$ of the distance from $A(\theta+\epsilon)$ to the intersection point $l_{\theta+\epsilon} \cap l_{\theta}$ is bounded. Therefore, the limit as $\epsilon \to 0$ of the perpendicular distance from $A(\theta+\epsilon)$ to l_{θ} is zero.

We have that $\lim_{\epsilon \to 0} A(\theta + \epsilon)$ must be a point P on l_{θ} which intersects S, where for every other point Q on the bisecting chord with direction θ , the vector P - Q points in positive direction θ . There is only one such point, $A(\theta)$; therefore,

$$\lim_{\epsilon \to 0} A(\theta + \epsilon) = A(\theta),$$

and $A(\theta)$ varies continuously with θ .

Bisection envelopes
Noah Fechtor-Pradines

Involve, Vol. 8 (2015) 307-328

A straight line equation for convex polygon bisection...

... or even bisection-convex polygon bisection?

An Application

We may triangulate a polygon on n vertices by adding n-3 diagonals, as illustrated on the right. We would like to test if some straight line joining a triangle vertex to the opposite polygon edge bisects the area of the polygon. In our diagram this requires a value of $t \in [0, 1]$ for which the poly-

gons v_0 , $(1-t)v_0 + tv_1$, v_3 , v_4 and $(1-t)v_0 + tv_1$, v_1 , v_2 , v_3 have equal area.

An application of the shoelace formula gives

$$t = \frac{A_R - A_L}{2A_{\Lambda}}$$

 A_L = area to left of middle triangle

 A_R = remaining polygon area

 A_{Δ} = area of middle triangle

Strategy for writing down a bisecting straight line equation

Divide interior of polygon into sectors bordered by pairs of bisecting lines x and y

$$u(x, y) = wx + (1 - w)y, w \in [0,1]$$

If given direction vector \mathbf{u} lies in sector then this will solve to give $w \in [0,1]$

For triangle we had
$$t = \left(1 + \sqrt{\frac{2-w}{1+w}}\right)^{-1}$$
;

For trapezoid we had
$$t = \left(1 + \sqrt{\frac{2 - (1 - \gamma^2)w}{1 + \gamma^2 + (1 - \gamma^2)w}}\right)^{-1}$$
, for tilting parallel to base, top base = bottom base scaled by γ

In general case things may not simplify so nicely (i.e. T(w) will involve u, x and y).

First step: Divide interior of polygon into sectors bordered by

Apply the bootlace formula trick at each vertex.

Pairs of lines defining a sector cannot 'include' a vertex because tilting won't work in this case.

In fact even u(x, y) = wx + (1 - w)y, won't work.

First step: Divide interior of polygon into sectors bordered by pairs of bisecting lines Q. Will this always cover an angle of $\tau/2$ for bisection-convex polygons?