
Polygons and a hash function

Robin Whitty
LSBU Maths Study Group
14th September 2023

Aim: translate green vector to give a chord bisecting the area of the polygon

That old Intermediate Value Theorem game

Way beyond me to systematically translate vector to find the right ‘chord’

Intermediate Value Theorem applies but…

Our terms of engagement:

Strictly bisection convex: all
bisecting straight lines are distinct
chords

Non-strictly bisection convex: all
bisecting straight lines are not-
necessarily distinct chords

Not bisection convex: some
bisecting straight lines cross
polygon edges

Our approach (for bisection convex polygons):

• Find a bisecting line from each vertex to an opposite edge.
• Form a corresponding collection of anti-clockwise consecutive direction vectors which cover

a half-circle
• Choose a pair of bisecting vectors whose angle includes the direction of the green vector

(unique unless this vector is parallel to a bisecting vector – degenerate case)

The tilting trick

Tilt anti-clockwise from the first bisecting chord to give the angle of our required bisecting vector.

By construction this will form two triangles on the bisecting chord. The tilting point can be chosen
so that these triangles have equal area.

We can confirm that the ‘half-polygon’ formed
by the tilted chord has half the original area.

Residual issues

• Finding the bisecting chords between which to locate the required vector involves
forming a matrix of triangle areas. This is a puzzling (to me) property.

• The triangle areas can be used to construct the bisecting chords systematically
using a feed-forward mechanism which seems suggestive (to me).

• Ordering the bisecting chords to make them consecutive around a half-circle can
be done by taking walks on a torus. This seems of independent interest (to me).

The characteristic polynomial puzzle

Characteristic polynomial of triangle areas matrix for
𝑛-vertex polygon with area 𝑃 is (apparently)

det 𝐴 − 𝑞𝐼 = 𝑞𝑛−3(𝑞 − 𝑃)(𝑞 + Τ𝑃 2 ± 𝛼𝑖)

What is 𝛼?

Char poly: 𝑞 𝑞 −
55

2
𝑞 +

55

4
±

5303

4
𝑖

1

2

3

4

5

E.g. Green triangle area
denoted ∆12 is
1

2
10 × 5 − 6 × 1

2 = ൗ47
2

by Shoelace formula.

Triangle areas matrix

∆𝑖𝑗 𝑖=1…𝑛
𝑗=𝑖+1…𝑛−2+𝑖

Bisecting chords from the matrix of
triangle areas

1

2 3

4

5
6

𝑡31 = 1 − 𝑡23
∆23
∆31

∆12

∆56

⋯

1 2 3 4 5 6

1 ∆12 ∆13 ∆14 ∆15

2 ∆23 ∆24 ∆25 ∆26

3 ∆31 ∆34 ∆35 ∆36

4 ∆41 ∆42 ∆45 ∆46

5 ∆51 ∆52 ∆53 ∆56

6 ∆61 ∆62 ∆63 ∆64

𝑡15 = 1 −
𝑃

2∆15

𝑡14 = 1 + 𝑡15
∆15
∆14

𝑡13 = 1 + 𝑡14
∆14
∆13

𝑡12 = 1 + 𝑡13
∆13
∆12

𝑡25 = 1 + 𝑡26
∆26
∆25

𝑡24 = 1 + 𝑡25
∆25
∆24

𝑡26 = 1 − 𝑡12
∆12
∆26

𝑡23 = 1 + 𝑡24
∆24
∆23

𝑡36 = 1 + 𝑡31
∆31
∆36

𝑡35 = 1 + 𝑡36
∆36
∆35

𝑡34 = 1 + 𝑡35
∆35
∆34

𝑡42 = 1 − 𝑡34
∆34
∆42

⋯
𝑡𝑖𝑗 is the proportion in

which edge 𝑗, 𝑗 + 1 must be
divided in order for the chord
from vertex 𝑖 to be bisecting.
This proportion must lie in
0,1 for it to actual be a chord.

A feed-forward computation

We define a series of values 𝑓𝑛 in terms of a constant 𝐾 and a list of lists of values 𝑙𝑖𝑗 :

𝑓𝑛+1 = 𝐾 + 𝑓𝑛 × 𝑙𝑖𝑗,

or 𝑓𝑛+1 = 𝐾 − 𝑓𝑛 × 𝑙𝑖𝑗, if 𝑙𝑖𝑗
if 𝑙𝑖𝑗 is the first entry in one of the lists.

𝑡15 = 1 −
𝑃

2∆15

𝑡14 = 1 + 𝑡15
∆15
∆14

𝑡13 = 1 + 𝑡14
∆14
∆13

𝑡12 = 1 + 𝑡13
∆13
∆12

𝑡26 = 1 − 𝑡12
∆12
∆26

In our application the 𝑓𝑛 are the 𝑡𝑖𝑗 , 𝐾 = 1 and the 𝑙𝑖𝑗 are ratios of triangle areas

1 2 3 4 5 6

1 ∆12 ∆13 ∆14 ∆15

2 ∆23 ∆24 ∆25 ∆26

3 ∆31 ∆34 ∆35 ∆36

4 ∆41 ∆42 ∆45 ∆46

5 ∆51 ∆52 ∆53 ∆56

6 ∆61 ∆62 ∆63 ∆64

(The 𝑙𝑖𝑗 don’t really form a

matrix because some of the
triangle areas ∆𝑖𝑗 may be

zero and are omitted from
the calculation of the 𝑡𝑖𝑗)

Feed-forward looking for an application…

Where else might this feed-forward apply naturally? E.g. Young tableaux are lists of lists of numbers.

… in cryptography?

Feed-forward mechanisms give a way of scrambling input values, or producing pseudo-random
output from an input seed value.

An example might be to calculate a hash value for a password.

A hash function 𝑓 maps, say, a password 𝑝, non-injectively, to a hash value ℎ = 𝑓(𝑝), so that it is
hard (for an attacker)

1. To find 𝑝 for a given ℎ value (𝑓 is a one-way or ‘trap door’ function)
2. Given 𝑝 to find 𝑝′ such that 𝑓(𝑝′) = 𝑓(𝑝), (creating ‘collisions’)

This should be true even if everything about the function 𝑓 is known to the attacker.

So how does 𝑓 𝑥 = 𝐾 + 𝑥 × 𝑙𝑖𝑗 do as a hash function?

Terribly!

Hash function 𝑓 𝑥 = 𝐾 + 𝑥 × 𝑙𝑖𝑗 .

E.g. 𝑙𝑖𝑗 = a, b, c , d, e, f, g , …

𝑥 ⟶ 𝐾 + 𝑎𝑥 ⟶ 𝐾 + 𝐾 + 𝑥𝑎 𝑏 ⟶ 𝐾 + 𝐾 + 𝐾 + 𝑥𝑎 𝑏 𝑐 ⟶ ⋯

My hash function exploded

Run 𝑓 𝑥 = 𝐾 + 𝑥 × 𝑙𝑖𝑗 on the output but using lists …,
1

𝑐
,
1

𝑏
,
1

𝑎
.

𝐾 + 𝐾 + 𝐾 + 𝑥𝑎 𝑏 𝑐 ⟶ 𝐾 +
𝐾

𝑐
+ 𝐾 + 𝐾 + 𝑥𝑎 𝑏 ⟶ 𝐾 +

2𝐾

𝑏
+

𝐾

𝑏𝑐
+ 𝐾 + 𝑥𝑎

⟶
2𝐾

𝑎
+
2𝐾

𝑎𝑏
+

𝐾

𝑎𝑏𝑐
+ 𝑥

Since we know everything about 𝑓 we can remove the values of 𝐾, 𝑎, 𝑏, 𝑐 and we are left
with the original input 𝑥.

But it’s worse!

My hash function explodes interestingly (to me)

I took the hash function and looked at all possible sign changes for the reciprocals in the attack
just described:

(I used 𝑠 and 𝑞 instead of 𝑥 and 𝐾 – I was too lazy to re-run the calculation to make it consistent)

Regardless of the lengths of lists, the same two choices of signs uniquely cause everything to
cancel except for two additional terms:

Output of reversed function:

The walks on a torus thing

1

2 3

4

5

6

1, 4
2, 5
3, 5
4, 6
5, 1
6, 3

Represent the lines as matrix entries. The
matrix lives on a torus, so it wraps round
horizontally and vertically.

Connect the entries in a cycle using the
following rules
1. a column of 1s is joined vertically
2. a 1 with a vacant cell below is joined

to the entry diagonally opposite the
cell to its right.

The result is the ordering we want:

1

1

1

1

1

1

1, 4
5, 1
2, 5
3, 5
6, 3
4, 6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

