$\leftarrow \quad$ Poster

．robin．＠robinhouston－ 24 avr． 2019
Yes！I don＇t know why this isn＇t more commonly done．

Laurens Gunnarsen＠MathPrinceps • 3 mars 2019 ＠jamestanton God wants us to write our polynomials like this：
$1 a x^{\wedge} 0$
$1 a x^{\wedge} 1+1 b x^{\wedge} 0$
$1 a x^{\wedge} 2+2 b x^{\wedge} 1+1 c x^{\wedge} 0$
$1 a x^{\wedge} 3+3 b x^{\wedge} 2+3 c x^{\wedge} 1+1 d x^{\wedge} 0$
$1 a x^{\wedge} 4+4 b x^{\wedge} 3+6 c x^{\wedge} 2+4 d x^{\wedge} 1+1 e x^{\wedge} 0$ ，
with their coefficients multiplied by entries drawn from Pascal＇s triangle．Makes everything nicer．
Q 1
$\uparrow \downarrow$
02
H．l
さ

3
．robin．
＠robinhouston
Gauss knew this．（Disquisitiones Arithmeticae 152）
ci possunt．Proposita congruentia

$$
a x x+b x+c \equiv 0
$$

secundum mod．m solvenda，huic aequivalebit congruentia

$$
4 a a x x+4 a b x+4 a c \equiv 0(\bmod .4 a m)
$$

i．e．quivis numerus alteri satisfaciens etiam alteri satisfaciet．Haec vero ita ex－ hiberi potest

$$
(2 a x+b)^{2} \equiv b b-4 a c(\bmod .4 a m)
$$

unde omnes valores ipsius $2 a x+b$ minores quam $4 a m$ si qui dantur inveniri possunt．Quibus per $r, r^{\prime}, r^{\prime \prime}$ etc．designatis，omnes solutiones congr．prop．dedu－ centur ex solutionibus congruentiarum

$$
2 a x \equiv r-b, 2 a x \equiv r^{\prime}-b \text { etc. }(\bmod .4 a m)
$$

quas in Sect．II invenire docuimus．Ceterum observamus，solutionem plerumque per varia artificia contrahi posse，ex．gr．loco congr．prop．aliam inveniri posse

$$
a^{\prime} x x+2 b^{\prime} x+c^{\prime} \equiv 0
$$

illi aequipollentem，et in qua a^{\prime} ipsum m metiatur；haec vero de quibus Sect．ul－ tima conferri potest，hic explieare brevitas non permittit．

6：48 PM－ 24 avr． 2019
Laurens Gunnarsen＠MathPrinceps • 24 avr． 2019
In fact，this is a celebrated point of disagreement between Lagrange and Gauss，who held opposing views on the question of whether a quadratic form＇s＂middle coefficient＂ought，or ought not，to have a preliminary factor of 2．（These days，expert opinion agrees with Lagrange．）
Q 2
$\uparrow \downarrow$
$O 1$
llı
さ

3
．robin．＠robinhouston • 24 avr． 2019
Interesting！I take it you are on Gauss＇s side in this？
Q
七7
0
Ill
む

