Sharkovsky’s Theorem Specify an orderings, of the positive integers:

3,5,7.9,...,2x3,2x5,2x7,2X9, ..., 2°x3,2°x5, 2°x7,2°x9, ... ... 24232221 1,

defined formally as foIIows takexy W|th X and y written (uniquely) asx 2'p and y= 2°q, p, q odd,;
then x< yifr < s and p> 1; otherwise y< x. Now let f: R — R be a continuous function havmg a
point x of period m; that is, r1‘(x) f(x), where f" denotes the m-th iteration of f. Then for every n with
m < n, f has some point of period n. In particular, if f has a poihperiod 3, then f has periods of all
positive integer orders.
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Iterating the logistic map fx) = rx(1 =) from ; Yy 3819 3.829 3.839 3.849 3.859

x5 =04, usingr =3.7: 0 1 2 3 4
04 —>089 > 036—>085— ... Bifurcation diagrams showing long-term behaviour of the iterated logistic map for different 7.

For any choice of parameteythelogistic map f(x) = rx(1 — X), certainly gives a continuous curve, as is illustratechmleft-hand plot (using

r = 3.7). The long-term behaviour of the iterated logistic mapispthyed in the right-hand plots: choose an arbitraryahitaluex, € (0, 1) and
calculate the sequenddx,), f(f(xg)), f(f(f(xo))),...; for values ofr between zero and ~ 3.57 the sequence leads our arbitrary initial value
to convergence in a unique cycle througlv@lues, = 0,1, 2, ... (period 2). Beyond 3.57, chaos ensues: indeed, the choiee.7 appears to
provide no convergent behaviour, and a tiny change tventually causes a large change to our sequence. Sudaenigdr = 3.83, a window

of order opens! On the far right, magnification shows coneecg to a cycle of period three. But here Sharkovsky’s theqneedicts periods of
anylength. Thus some choice & will converge to a cycle of length, say, 100; This cycle willtibe anattractor. an infinitesimal change try

will drive us back to period 3. Such non-attracting periodsiavisible to computers!

The Ukranian O.M. Sharkovsky’s 1964 theorem shows thatreamatorld exists behind the complexity of fractal plots.

Web link: www.mcasco.cori®rdeyordintro.htmi an excellent free on-line course by J.D. Jones for M. Cassnéiates.
Further reading: Over and Over Agailby Gengzhe Chang and Thomas W. Sederberg, Mathematicatiassa of America, 1998,
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