Where I can put my new Theorem of the Day

The web site www.theoremoftheday.org maintains a list of, say, L theorems. These are picked in turn to be displayed as 'Theorem of the Day'. To do this, a javascript function (written for me by Mike Child) measures the number of milliseconds since a fixed base date and divides this by 86400000 , the number of milliseconds in twenty four hours. The result, rounded down, is a number of days, D, which increases by one every midnight. The theorem displayed on any given day is chosen as theorem number $D(\bmod L)$ in the list (indexed from 0 to $L-1$).

As often as possible I choose another classic theorem and add a description of it to the website; with respect to the above, this increases L to $L+1$, while D remains fixed. My problem is that I want to do this without the order of presentation of the theorems (and today's already chosen theorem in particular) being disturbed. So while adding the new theorem I have also to cycle the list of theorems round to bring position $D(\bmod L)$ into position $D(\bmod L+1)$.
Now the question is, how do I discover the current value of D ? The answer I would like to give is that I use a scrupulously coded algorithm based on Dershowitz and Reingold's timeless Calendrical Calculations (Cambridge University Press, 2001). The reality is that I cheat: I increase the theorem array size by 1 , upload the java code, observe what theorem is now (illicitly) occupying today's slot and make haste to re-upload with the correct theorem cycled into its rightful position.
However, in the process of pulling this fast one, I do get to find out the value of D; and it seems worth mentioning how because it is a nice illustration of one of the Theorems of the Day: the Chinese Remainder Theorem.

So, suppose that the day's theorem is currently in position s in the list, the value of $D(\bmod L)$, and that, when I add the new theorem, the current theorem changes to $D(\bmod L+1)$, which we notice is position t in the list. This is written as a pair of congruence equations in the unknown, D :

$$
\begin{equation*}
D \equiv s(\bmod L), \quad D \equiv t(\bmod L+1) \tag{1}
\end{equation*}
$$

Now the Chinese Remainder Theorem, in its simplest form, says that

$$
x \equiv a(\bmod m), \quad x \equiv b(\bmod n),
$$

where $\operatorname{gcd}(m, n)=1$, is solved, uniquely $\bmod m n$, by:

$$
\begin{equation*}
x=a m\left(m^{-1}(\bmod n)\right)+b n\left(n^{-1}(\bmod m)\right), \tag{2}
\end{equation*}
$$

where $m^{-1}(\bmod n)$ is the least positive multiple of m which has remainder $1(\bmod n)$.
Now it is easy to see that $L^{-1}(\bmod L+1)=L$, since $L^{2}=(L+1)(L-1)+1 \equiv 1(\bmod L+1)$, and $(L+1)^{-1}(\bmod L)=L+1$, since $(L+1)^{2}=L^{2}+2 L+1 \equiv 1(\bmod L)$. So equation (1) is solved by

$$
\begin{aligned}
D & =s(L+1)\left((L+1)^{-1}(\bmod L)\right)+t L\left(L^{-1}(\bmod L+1)\right)(\bmod L(L+1)) \\
& =s(L+1)^{2}+t L^{2}(\bmod L(L+1))
\end{aligned}
$$

Example: suppose today's theorem is number 4 in the list of 42 . I add a new theorem and now the theorem displayed has changed to number 16 (out of 43). Then

$$
D=4 \times 43^{2}+16 \times 42^{2}(\bmod 42 \times 43)=35620(\bmod 1806)=1306 .
$$

A doubt remains in my mind: is there not some clever way to find out the value of D without making today's theorem temporarily change? Perhaps instead of increasing L to $L+1$ some other increased length L^{\prime} would reveal D without changing from theorem s to t (L^{\prime} does not have to be coprime to L; provided $s \equiv t\left(\bmod \operatorname{gcd}\left(L, L^{\prime}\right)\right)$ an extended version of the Chinese Remainder Theorem still applies.) Or there is some other approach I have not thought of.

