THEOREM OF THE DAY

Lucas' Theorem Let p be a prime number and let a and $b, a \geq b$, be positive integers written in base p, say, $a=\sum_{i=0}^{s} a_{i} p^{i}$ and $b=\sum_{j=0}^{t} b_{j} p^{j}$ and $s \geq t$. Then

$$
\binom{a}{b} \equiv\binom{a_{0}}{b_{0}}\binom{a_{1}}{b_{1}} \ldots\binom{a_{t-1}}{b_{t-1}}\binom{a_{t}}{b_{t}}(\bmod p)
$$

$$
\binom{2528646}{675471} \equiv\binom{10}{5} \times\binom{ 9}{4} \times\binom{ 8}{5} \times\binom{ 7}{1} \times\binom{ 7}{2} \times\binom{ 4}{4}(\bmod 11)
$$

$=252 \times 126 \times 56 \times 7 \times 21 \times 1(\bmod 11)=261382464(\bmod 11)$.
A neat trick for extracting the remainder mod 11 is to alternate-
ly add and subtract digits in reverse order; for 261382464 this gives $4-6+4-2+8-3+1-6+2=19-17$
$=2$. And, in a mere few minutes, we have dis-
covered something about a number having about 640 thousand digits: and that is more digits than there are minutes in sixty three whole weeks!

Edouard Lucas (1842-1891) is remembered for his work on the Fibonacci numbers and for inventing the Towers of Hanoi puzzle. His 1878 theorem on the binomial coefficients can be used to derive many interesting properties of Pascal's triangle, for instance, $\binom{a}{b}$ is odd exactly when every 1 in the base 2 representation of b is also a 1 in the base 2 representation of a.

Web link: math.hmc.edu/funfacts/lucas-theorem/; the Pascal's triangle image of is adapted from one at mathforum.org.
Further reading: Combinatorics: Topics, Techniques, Algorithms, by Peter J. Cameron, CUP, 1994, chapter 3.

