

Binomial coefficients $\binom{n}{m}$

Defined by $\binom{n}{m}$ = number of ways of choosing *m* objects from *n*. Same as number of *m*-subsets of an *n*-set. Also: defined for $1 \le m < n$, by $\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$, and by $\binom{n}{n} = \binom{n}{0} = 1$. I Also: defined by $\binom{n}{m} = \frac{n!}{m!(n-m)!} = \frac{n \times (n-1) \times \dots \times (n-m+1)}{m \times (m-1) \times \dots \times 2 \times 1}$, which remains defined for any real or even complex *n*, consistent with the binomial theorem: $(x+y)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^{n-k} y^k, \ \binom{n}{k} = 0, k > n.$ We may prefer to use the first definition for (combinatorial, more intuitive) proofs of binomial identities. 120 210 252 210 10 1 E.g. sum of row n entries is 2^n . Easy but unrevealing algebraic proof vs 'obvious' combinatorial proof.

Fibonacci and Pascal

Sums of 'diagonals' are Fibonacci numbers

$$F_5 = 8 = {5 \choose 0} + {4 \choose 1} + {3 \choose 2}$$

Combinatorial proof:

 F_n is the number of ways to write *n* as a sum of 1s and 2s. E.g. 4 = 1 1 1 1 1, 1 1 2, 1 2 1, 2 1 1, 2 2

So we must choose up to $\lfloor n/2 \rfloor$ positions for the 2s

Fibonacci and rabbits

 F_n is the number of pairs of breeding rabbits at generation n, motivated by the recurrence $F_n = F_{n-1} + F_{n-2}$.

But why is F_n is the number of ways to write n as a sum of 1s and 2s?

A bijection between generations of pairs of rabbits and 1-2 sequences completes the combinatorial proof of Pascal vs Fibonacci:

Rabbits

The 'Star of David' theorem

1

1

1

1

2

3

3

1

Can we find a combinatorial explanation for equalities of triple products of binomial coefficients?? Note the closely related results that says the triples have equal GCDs, also (I think) lacking a combinatorial proof.

1	4	6	4	1						
1	5	10	10	5	1					
1	6	15	20	15	6	1		_		
1	7	21	35	35	21	7	1			
1	8	28	56	70	56	28	8	1		
1	9	36	84	126	126	84	36	9	1	
1	10	45	120	210	252	210	120	45	10	1
				••	•	-				-

Harlan J. Brothers' formula

	A relationship between Pascal and Euler's number e appears to have first been discovered by Harlan L Brothers in 2012 Let											pears				
$s_n = $ product of entries in row n of triangle. Then												12.LCl				
Γ	1	1			$\lim_{n \to \infty} \frac{S_{n-1}S_{n+1}}{S_n^2} = e.$											
	1	1	1	т	S- x S- 26471025 x 11759522374656 311286610767578342400											
	1	2	1	2	_		$\frac{37\times39}{S_0^2} = \frac{20471023\times11739322374030}{11014635520^2} = \frac{31120001}{12132219}$							$\frac{10707378342400}{25638445670400} \approx 2.5658$		
	1	3	3	1	9											
	1	4	6	4	1	96	_	$\frac{S_{99} \times S_{101}}{2} \sim 2.7048$								
	1	5	10	10	5	1	250	0	$S_{100}^2 \sim 2.7040.$					Algebraic proof:		
	1	6	15	20	15	6	1	162	2000					a calculation shows that $S_{n-1}S_{n+1} = (1 - 1)^n$		
	1	7	21	35	35	21	7	1	2647	/1025 11014635520				$\frac{S_n^2 - 1S_n + 1}{S_n^2} = \left(1 + \frac{1}{n}\right) \text{ which}$ in the limit is equal to e .		
	1	8	28	56	70	56	28	8	1							
	1	9	36	84	126	126	84	36	9	1	1 11759522374656 10 1 32406091200000000			Combinatorial proof:		
	1	10	45	120	210	252	210	120	45	10				???		
I		I	I	1	••	•	I	I	I	I						