1					Binomial coefficients					
1	1									
1	2	1						27 April 2023		
1	3	3	1							
1	4	6	4	1						
1	5	10	10	5	1					
1	6	15	20	15	6	1				
1	7	21	35	35	21	7	1			
1	8	28	56	70	56	28	8	1		
1	9	36	84	126	126	84	36	9	1	
1	10	45	120	210	252	210	120	45	10	1

Binomial coefficients $\binom{n}{m}$

1	Defined by $\binom{n}{m}=$ number of ways of choosing m objects from n. Same as number of m-subsets of an n-set. . 1
1	1

| 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad Also: defined by $\binom{n}{m}=\frac{n!}{m!(n-m)!}=\frac{n \times(n-1) \times \cdots \times(n-m+1)}{m \times(m-1) \times \cdots \times 2 \times 1}$, which remains defined for any real or even complex n, consistent with the binomial theorem:

We may prefer to use the first definition for (combinatorial, more intuitive) proofs of binomial identities.
E.g. sum of row n entries is 2^{n}.

Easy but unrevealing algebraic proof vs 'obvious' combinatorial proof.

The hockey stick identity

Fibonacci and Pascal

Sums of 'diagonals' are Fibonacci numbers

Combinatorial proof:

F_{n} is the number of ways to write n as a sum of 1 s and 2 s .
E.g. $4=11111,112,121,211,22$

So we must choose up to $\lfloor n / 2\rfloor$ positions for the 2 s

Fibonacci and rabbits

F_{n} is the number of pairs of breeding rabbits at generation n, motivated by the recurrence $F_{n}=F_{n-1}+F_{n-2}$.
But why is F_{n} is the number of ways to write n as a sum of 1 s and 2 s ?

A bijection between generations of pairs of rabbits and 1-2 sequences completes the combinatorial proof of Pascal vs Fibonacci:

The 'Star of David' theorem

Harlan J. Brothers' formula

A relationship between Pascal and Euler's number e appears to have first been discovered by Harlan J. Brothers in 2012.Let $s_{n}=$ product of entries in row n of triangle. Then

Algebraic proof: a calculation shows that $\frac{s_{n-1} S_{n+1}}{S_{n}^{2}}=\left(1+\frac{1}{n}\right)^{n}$ which in the limit is equal to e.

Combinatorial proof: ???

