
The Necklace Counting Formula: Addendum
Robin Whitty

In M500 Issue 285 I wrote down a formula for the number of necklaces withbi beads of colouri,
i = 1, . . . , t. The formula was given in terms of the partially ordered set (poset) of divisorsd1, . . . , dm

of the greatest common divisor of thebi, and of the Möbius functionµ(x, y) for this poset:

N(b1, b2, . . . , bt) =
1
n

m
∑

i=1

m
∑

j=i

di

(

n/d j

b1/d j, . . . , bt/d j

)

µ(di, d j), (1)

wheren = b1+ . . .+bt. The formula works if some of thebi are zero, using the fact that gcd(x, 0) = x.

The multinomial coefficient

(

x
y1, . . . , yt

)

is evaluated asx!/(y1! · · · yt!) and counts the number of non-

circular permutations ofx objects of whichy1 are colour 1,y2 are colour 2, etc. The usual binomial

coefficient

(

x
y

)

is a short way of writing

(

x
y, x − y

)

. Recall that if we sum these binomial coefficients

over all choices ofy the result is 2x and this generalises to monomial coefficients:

∑

y1+...+yt=x

(

x
y1, . . . , yt

)

= tx. (2)

By ‘necklace’ we mean a circular permutation of objects belonging to distinguished classes (colours)
taking into consideration rotational symmetry. Formula (1) was derived from a 1956Mathematical
Gazette paper in which the number of such permutations was found as the solution to a set of simulta-
neous equations. I found the double sum above to be preferable to saying “the solution is now found
by inverting the equation matrix”. However, I didn’t go far enough: a single summation was just
around the corner!

I also suggested that it was textbook stuff to specify a formula for the number of permutations with the
number of colours,t, specified but with no restriction on their distribution. This is true, the formula is
the following

N(n, t) =
1
n

∑

d≤n

ϕ(d)tn/d, (3)

using poset notationd ≤ n to meand divides inton. The functionϕ is Euler’s totient function whose
value at a positive integerx is the number of positive integers less thanx and coprime tox. For
example,

N(6, 3) =
1
6

(

ϕ(1)× 36
+ ϕ(2)× 33

+ ϕ(3)× 32
+ ϕ(6)× 31

)

=
1
6

(1× 729+ 1× 27+ 2× 9+ 2× 3) = 130.

There are many ways to determine the values ofϕ(x). We are going to find convenient the following
recursive definition, due to Gauss:

ϕ(1) = 1,

ϕ(y) = y −
∑

x<y

ϕ(x), y > 1, (4)

where we are still using poset notation and ‘<’ means ‘strictly divides’.

Formula (3) is sometimes misattributed to Captain Percy Alexander MacMahon who indeed wrote
about it in 1892 but acknowledged its prior discovery by another soldier, Monsieur le Colonel Charles



Paul Narcisse Moreau. Moreau had solved our counting problem in 1872 and was, as far as I know,
the first to do so. Formula (3) is a special case of his solution and I would now like to explain how we
get to it from formula (1).

Let me recall what, in my original contribution, I said aboutthe Möbius function. We are concerned
with the version for the poset of divisors, as illustrated below left. Somewhat informally the value of
the Möbius functionµ(x, y) for two elementsx andy of this poset is

∑

(−1)l(c) where the sum is over
all upward ‘chains’c from x to y and l(c) is the number of edges in the chain. The diagram of the
poset only shows ‘immediate’ division but our summation must also include all implied edges, such
as the edge from 3 to 12.

1 2 3 4 6 12
1 1 −1 −1 0 1 0
2 1 0 −1 −1 1
3 1 0 −1 0
4 1 0 −1
6 1 −1

12 1

The values ofµ(x, y) for the poset on
the left. For example,µ(3, 12) = 0
because there are two chains from 3
to 12: the two-edge chain 3− 6 − 12
which contributes (−1)2 to the calcu-
lation and the one-edge chain 3− 12,
not included in the diagram, which
contributes (−1)1.

I will rewrite formula (1) in a more poset-friendly form:

N(b1, b2, . . . , bt) =
1
n

∑

e≤M
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n1/e, . . . , nt/e

)

∑

d≤e

d µ(d, e)















, (5)

where M = gcd(b1, . . . , bt) and I no longer need to list the divisors ofM explicitly because the
poset notatione ≤ M takes care of that. The order of summation has changed from (1) but that is
just a matter of counting by column instead of by row. The important thing is to isolate the sum
∑

d≤e d µ(d, e), because such a sum is amenable to Möbius inversion, a contribution to number theory
by August Ferdinand Möbius in the 1830s, transferred to posets by group theorists in the 1930s as
follows:

g(y) =
∑

x≤y

f (x), for all y, if and only if f (y) =
∑

x≤y

g(x)µ(x, y), for all y.

Define f (e) =
∑

d ≤e d µ(d, e), for all e ≤ M. Thene =
∑

d≤e f (d), or f (e) = e −
∑

d<e f (e). And now
from Gauss’s formula (4):

N(b1, b2, . . . , bt) =
1
n

∑

e≤M

(

n/e
n1/e, . . . , nt/e

)

ϕ(e). (6)

This is what Colonel Moreau wrote down almost 150 years ago, and I should have written down, two
and half years ago, for M500. Suppose we now sum over all possible distributions of then beads
amoung thet colours. We get
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This double sum groups the monomial terms according partitions ofn; we will get the same result if
we group according to divisors ofn:
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and we recover Moreau’s formula (3) by applying identity (2).


