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Threading beads

We have n beads of m different colours. In how many ways may
we thread them on to a string?

Suppose the distribution of colours is not specified. Then

N(n,m) = m ×m × . . .×m = mn.
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Threading beads, colour distribution specified

Suppose there are ni beads of colour i , ni ≥ 0, n1 + . . .+ nm = n.

The number of permutations of n objects of which ni belong to
colour class i is given by the corresponding monomial coefficient:

N(n; n1, . . . , nm) =
n!

n1! · · · nm!
=

(

n

n1, . . . , nm

)

.
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The Multinomial Theorem

(x1 + . . .+ xm)
n =

∑

n1+...+nm=n

(

n

n1, . . . , nm

)

xn11 xn22 · · · xnmm .

Putting x1 = . . . = xm = 1, we get

mn =
∑

n1+...+nm=n

(

n

n1, . . . , nm

)

= N(n,m).

(For m = 2 this says that the n-th
row of Pascal’s triangle sums to 2n.
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Circular bead configurations

Suppose we form our string of beads into a circle and want our
count to ignore symmetrical configurations:
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Necklaces

Circular permutations of a string of n coloured beads, counted up
to rotational symmetry, are commonly called necklaces.

The symmetries are the cyclic group Cn of order n.
E.g.

C4 = {1, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}.

Write C (n,m) for the number of necklaces of n beads using zero
or more of each of m possible bead colours.
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Bracelets

Circular permutations of a string of n coloured beads, counted up
to rotational and reflectional symmetry, are commonly called
bracelets.

The symmetries are the dihedral group D2n of order 2n.
E.g.

D8 = C4 ∪ {(1, 2)(3, 4), (1, 4)(2, 3), (1, 3), (2, 4)}.
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A 1956 article

Counts C(n; n1, . . . , nm)
necklaces with ni ≥ 0
beads of colour i ,
n = n1 + . . .+ nm.

Hazel Perfect, ”Concerning arrange-
ments in a circle”, The Mathematical

Gazette, Vol. 40, No. 331, 1956, pp.
45-46.
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Linear algebra

Perfect’s paper solved the counting problem in terms of a set of
simultaneous linear equations. Let M = gcd(n1, . . . nm). Then
there are M equations and their matrix is the adjacency matrix of
the partially ordered set (poset) of divisors of M.

1 2 3 4 6 12

1 1 1 1 1 1 1
2 1 0 1 1 1
3 1 0 1 1
4 1 0 1
6 1 1
12 1
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The Möbius function for posets

Now the inverse of the adjacency matrix of a poset is the Möbius
function





















1 2 3 4 6 12

1 1 1 1 1 1 1
2 1 0 1 1 1
3 1 0 1 1
4 1 0 1
6 1 1

12 1





















−1

=

1 2 3 4 6 12

1 1 −1 −1 0 1 0
2 1 0 −1 −1 1
3 1 0 −1 0
4 1 0 −1
6 1 −1
12 1
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August Möbius (1790–1868)

For a positive integer n with P distinct
prime factors,

µ(n) =







0 if any prime factor is
squared in n

(−1)P otherwise

n 1 2 3 4 5 6 7 8 9 10 11 12

µ(n) 1 −1 −1 0 −1 1 −1 0 0 1 −1 0

A cornerstone of analytic number theory thanks to properties such
as

∑

d | n

µ(d) = 0, for n > 1.
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A digression

M500 Problem 206.6:

Evaluate
∑

p prime

1

p2
to any reasonable number of decimal

places.

Solution (ADF):

∑

p prime

∞
∑

r=1

1

rp2

∑

d | r

µ(d) =

∞
∑

n=1

µ(n)

n
log ζ(2n),

So:
∑

p prime

1

p2
=

∞
∑

n=1

µ(n)

n
log ζ(2n).
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Calculating the Möbius function µ(x , y) for posets

µ(x , y) =
∑

c

(−1)l(c),

where the sum is over all chains c ascending from x to y and l(c)
is the number of edges in the chain.

1 2 3 4 6 12

1 1 −1 −1 0 1 0
2 1 0 −1 −1 1
3 1 0 −1 0
4 1 0 −1
6 1 −1
12 1

E.g., µ(3, 12) = 0 because the two-edge chain 3− 6− 12
contributes (−1)2 to the calculation and the one-edge chain
3− 12, not included in the diagram, contributes (−1)1.

Robin Whitty Threading Beads – Addendum



Back to Hazel Perfect

We have n = n1 + . . .+ nm beads. Suppose gcd(n1, . . . , nm) = M,
and suppose the divisors of M are d1, . . . , dk .

Perfect derived:

C (n; n1, . . . , nm) =

(

d1

n
, . . .

dk

n

)

× S−1 ×









(

n/d1
n1/d1,...,nm/d1

)

...
( n/dk
n1/dk ,...,nm/dk

)









,

where S is the adjacency matrix of the poset of divisors of M.
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Hazel Perfect plus Möbius

Since S−1 is the Möbius function, Perfect’s summation can be
rewritten as:

C (n; n1, . . . , nm) =
1

n

k
∑

i=1

k
∑

j=i

di

(

n/dj
n1/dj . . . , nm/dj

)

µ(di , dj).
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An example

n = 8, n1 = 4, n2 = 2, n3 = 2.

M = 2, d1 = 1, d2 = 2, µ =

1 2

1 1 −1
2 1

C (8; 4, 2, 2) =
1

8

2
∑

i=1

2
∑

j=i

di

(

8/dj
4/dj , 2/dj , 2/dj

)

µ(di , dj)

=
1

8

[{

1×

(

8

4, 2, 2

)

µ(1, 1) + 1×

(

4

2, 1, 1

)

µ(1, 2)

}

+2

(

4

2, 1, 1

)

µ(2, 2)

]

=
1

8
[{1× 420 × 1 + 1× 12×−1}+ 2× 12× 1] = 54.
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Addendum No. 1

Moreau’s Necklace Formula (1872):

C (n,m) =
∑

d |m

ϕ(d)nm/d .

Le colonel Charles Paul Narcisse
Moreau (1837–1916). Famous in
chess circles for having the worst-
ever result in an international tour-
nament, having lost all 26 games at
Monte Carol in 1903.

(But he was 65 at the time and the competition involved several of
chess history’s finest, including Marshall, Pillsbury and Tarrasch.)
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Addendum No. 1 continued

Moreau’s Necklace Formula:

C (n,m) =
∑

d |m

ϕ(d)nm/d .

Rediscovered in 1892 by Édouard
Jablonski (1848–1923)...

(the portrait is by Michel Richard-
Putz).

... and publicised by Percy MacMa-
hon in 1892.
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Moreau’s Necklace Formula

C (n,m) =
∑

d |m

ϕ(d)nm/d .

The Euler totient function

For a positive integer n, the Euler totient function, denoted
ϕ(n), is defined to be the number of positive integers not ex-
ceeding n which are coprime to n. We can calculate ϕ using the
following recursive definition, due to Gauss:

ϕ(1) = 1,

ϕ(y) = y −
∑

x | y , x 6=y

ϕ(x), y > 1, (1)

The first few values are tabulated below:
n 1 2 3 4 5 6 7 8 9 10 11

ϕ(n) 1 1 2 2 4 2 6 4 6 4 10
the (local) maximum values occurring at the primes.
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Addendum No. 2

Rewrite C (n; n1, . . . , nm) =
1

n

k
∑

i=1

k
∑

j=i

di

(

n/dj
n1/dj . . . , nm/dj

)

µ(di , dj)

as C (n; n1, . . . , nm) =
1

n

∑

t |M

(

n/t

n1/t . . . , nm/t

)

∑

s | t

sµ(s, t).

e.g. n = 8, n1 = 4, n2 = 2, n3 = 2.

M = 2, d1 = 1, d2 = 2, µ =

1 2

1 1 −1
2 1

C (8; 4, 2, 2) =
1

8

[(

8

4, 2, 2

)

× 1× µ(1, 1)

+

(

4

2, 1, 1

)

{1 × µ(1, 2) + 2× µ(2, 2)}

]
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Möbius Inversion

In a finite poset

f (t) =
∑

s | t

g(s)µ(s, t), for all t

if and only if g(t) =
∑

s | t

f (s), for all t.

Define f (t) =
∑

s | t s µ(s, t), for all t ≤ M. Then t =
∑

s | t f (s),
or f (t) = t −

∑

s | t, s 6=t f (s).

But by Gauss’s formula, this is just the definition of ϕ. So we can
rewrite our necklace calculation as a single sum:

C (n; n1, . . . , nm) =
1

n

∑

t |M

(

n/t

n1/t, . . . , nm/t

)

ϕ(t).
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Back in 1872...

C (n; n1, . . . , nm) =
1

n

∑

t |M

(

n/t

n1/t, . . . , nm/t

)

ϕ(t).

is more or less what le colonel Moreau wrote down in 1872. To
derive his necklace formula

C (n,m) =
∑

d |m

ϕ(d)nm/d .

we must sum over all distributions of colours:

C (n,m) =
1

n

∑

n1+...+nm=n





∑

t | gcd(n1,...,nm)

(

n/t

n1/t, . . . , nm/t

)

ϕ(t)



 ,

and use the fact that
∑

n1+...+nm=n

(

n

n1, . . . , nm

)

= mn.
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Pólya–Redfield Enumeration
The presence of ϕ in Moreau’s formula is reflected in its role in the
cycle index of the cyclic group.
Theorem (Redfield, Pólya): The cycle index of the cyclic group
Cn is given by

Z (Cn) =
1

n

∑

k | n

ϕ(k)s
n/k
k ,

where the si are invariants.
To enumerate 3-coloured necklaces, for example, we make a formal
substitution sk = rk + bk + yk , where r , b and y are again
invariants. For a 4-bead necklace we get:

b4 + b3r + b3y + 2 b2r2 + 3 b2ry + 2 b2y2 + br3 + 3 br2y

+3 bry2 + by3 + r4 + r3y + 2 r2y2 + ry3 + y4.

The term 3 b2ry , for example, means there are three necklaces, up
to rotational symmetry, having two blue beads, one red bead and
one yellow bead.
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