THEOREM OF THE DAY

Moreau's Necklace Formula Take n balls of t different colours, with $n_{i} \geq 0$ balls of colour $i, i=1, \ldots, t$. Then the number of distinct arrangements of the balls, in a line or in a circle, is given, respectively, by:
Linear: $\binom{n}{n_{1}, \ldots, n_{t}}=\frac{n!}{n_{1}!\cdots n_{t}!}$;

> Circular: $\frac{1}{n} \sum_{d \mid D}\binom{n / d}{n_{1} / d, \ldots, n_{t} / d} \varphi(d)$, where $D=\operatorname{gcd}\left(n_{1}, \ldots n_{t}\right)$ and φ is the Euler totient function (see below left).

The Euler totient function

For a positive integer n, the Euler totient function, denoted $\varphi(n)$, is defined to be the number of positive integers not exceeding n which are coprime to n. If the distinct primes dividing n are $p_{1}, p_{2}, \ldots p_{m}$ (we may write $\left.p_{i} \mid n, i=1, \ldots, m\right)$, then the value of $\varphi(n)$ may be calculated explicitly as

$$
\varphi(n)=n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots\left(\frac{p_{m}-1}{p_{m}}\right) .
$$

For example,

$$
\varphi(18)=\varphi\left(2 \times 3^{2}\right)=18 \times \frac{1}{2} \times \frac{2}{3}=6
$$

The first few values are tabulated below:

n	1	2	3	4	5	6	7	8	9	10	11
$\varphi(n)$	1	1	2	2	4	2	6	4	6	4	10

Counting necklaces with n balls (beads) and k colours is a well-studied problem which may be solved using the Orbit Counting Lemma or, more sweepingly, by applying Pólya-Redfield enumeration to derive the appropriate multivariate counting polynomial. Charles Moreau's formula, published in 1872, provides a direct calculation of individual coefficients in this polynomial.

Web link: mathlesstraveled.com/2017/12/12/
Further reading: Notes on Counting: An Introduction to Enumerative Combinatorics by Peter J. Cameron, Cambridge University Press, 2017.

In our example there are $n=24$ balls with $n_{1}=12, n_{2}=8$ and $n_{3}=4$. The multinomial coefficient $\binom{24}{12,8,4}$ gives the number of linear arrangements as a little over 1.3×10^{9}.
For the necklace (circular) count our sum is over the divisors $\{1,2,4\}$ of $D=\operatorname{gcd}(12,8,4)=4$:

$$
\frac{1}{24}\left\{\binom{24}{12,8,4} \varphi(1)+\binom{12}{6,4,2} \varphi(2)+\binom{6}{3,2,1} \varphi(4)\right\},
$$

giving roughly 5.6×10^{7}. The first term in the sum accounts for almost all these necklaces: to a first approximation we are removing circular symmetries just by dividing the linear count by the number of balls. Conversely, notice that we can make the linear count a special case of the necklace count by adding a single ball of a new colour: $n_{t+1}=1$, in any of the 24 possible positions. This has the effect of placing a 'cut point' in our circle, making it a line. Correspondingly, in the above calculation the gcd is reduced to 1 , and the summation reduces to a single multinomial.
The entries in the n-th row of Pascal's triangle, beginning with the binomial coefficient $\binom{n}{0}$, sum to 2^{n}; generalising, the sum of all multinomial coefficients dividing n into t parts is t^{n}. So if we sum our necklace formula over all possible choices of t colours for our n balls, including cases where some of the n_{i} are zero, we will get the number of n-ball necklaces having t or fewer colours: $(1 / n) \sum_{d \mid n} \varphi(d) t^{n / d}$. For $n=4$ and $t=3$, this evaluates to 24 , which you can list, with a little effort! (Click (Bicon $^{\text {icon top right, }}$ for answer.

