THEOREM OF THE DAY

Stirling's Approximation For positive integers n, the value of the factorial function $n!$ is given asymptotically by
 where $\tau=2 \pi$.

$$
n!\approx \sqrt{\tau n} n^{n} e^{-n}
$$

1,1	1,1	1,2
1,2, 2	1,2,1	$1,0.885$
1,3,3,1	1,3,3,1	1, 0,909, 0.909
$1,4,6,4,1$	1, 4, 6, 4, 1	1, 0.917 0.940 0
$5,10,10,5,1$	1,5,11, 11, 5, 1	$1,0.916,0.943,0.943$
15,20, 15, 6, 1	$1,7,16,21,6,7,1$	$1,0.916,0.955,0.962,0$
$1,35,35,21,7,1$	$1,8,22,36,36,22,8,1$	$1,0.920,0.955,0.964,0.964$
$56,70,36,28,8,1$	$1,9,29,58,72,78,29,9,1$	$1,0.916,0.956,0.966,0.968$, 0

Since binomial coefficients $\binom{n}{k}$ can be calculated as $\binom{n}{k}=n!/ k!(n-k)!$ we can use Stirling's approximation to calculate the approximate values in Pascal's triangle, as shown here. The boxed values locate the so-called central binomial coefficients, for which our approximation simplifies neatly to $\binom{n}{n / 2} \sim 2^{n+1} / \sqrt{\tau n}$. They indicate that Stirling's approximation is increasing in accuracy as n increases. The distance between the actual and approximated values grows larger with n but their ratio grows closer and closer to one so that, asymptotically, the approximation is accurate. The approximation may also be stated as an equality $n!=\sqrt{\tau n}(n / e)^{n}(1+\mathrm{O}(1 / n))$. The $\mathrm{O}(1 / n)$ represents additional terms which vanish as quickly as or quicker than $1 / n$; it may be 'expanded' as far as desired: Knuth replaces $1+\mathrm{O}(1 / n)$ with $1+1 /(12 n)+1 /\left(288 n^{2}\right)-$ $139 /\left(51840 n^{3}\right)-571 /\left(2488320 n^{4}\right)+\mathrm{O}\left(1 / n^{5}\right)$ which, rounding to the nearest integer, gives the exact value of $n!$ up to $n=12$.

James Stirling published his approximation in 1730. It would seem more fair to call it the De Moivre-Stirling approximation since Abraham de Moivre had just discovered that $n!\approx c \sqrt{n} n^{n} e^{-n}$, for some constant c. Stirling's contribution, acknowledged by De Moivre, was to identify the constant as $\sqrt{\tau}$. The formula thereby becomes one of those rare mathematical beasts (like Euler's $e^{\tau i / 2}+1=0$) that display in a natural way the fundamental constants e and τ.

Web link: theoremoftheday.org/Binomial/Stirling/Byron-Schmuland-notes.pdf (notes by Byron Schmuland)
Further reading: The Art of Computer Programming by Donald E. Knuth, Addison-Wesley, 1999 edition. Vol. 1, section 1.2.11.

