$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} V$		lster	nholn	ne's T				THEOREM OF THE DAY														
1 2	1		Wolstenholme's Theorem If $p \ge 5$ is prime, then $\binom{2p-1}{p-1} \equiv 1 \mod p^3$.																			
1 5 1	$\frac{1}{1} + \frac{6}{6} + \frac{4}{1}$ is congruent, mod <i>p</i> , to the product $\prod {n_i \choose k_i}$, where the n_i and k_i are matching pairs of digits in the base- <i>p</i> representations of <i>n</i> and <i>k</i> . Indeed, $\binom{n}{k} \equiv \binom{pn}{pk}$ mod <i>p</i> , since multiplying by <i>p</i> merely contributes an extra zero to a base- <i>p</i> representation.																					
1 7 2	21	35	35	21	7	Now take $n = 2$ and $k = 1$, giving $\binom{2}{1} \equiv \binom{2p}{p} \mod p$, or $2 \equiv 2\binom{2p-1}{p-1} \mod p$. Further investigation reveals																
1 8 2	28	56	70	56	28	8 1 that, for odd primes p , $\binom{n}{k} \equiv \binom{pn}{pk} \mod p^2$. And indeed we can advance to $\binom{n}{k} \equiv \binom{pn}{pk} \mod p^3$,																
1 9 3	36	84	126	126	84	36	9	1		for	primes p	\geq 5. For example, taking $n = 4$, $k = 3$ and $p = 5$ we can confirm										
1 10 4	45	120	210	252	210	120	45	10	1		that 4	$= \begin{pmatrix} 4 \\ 3 \end{pmatrix} \equiv \begin{pmatrix} 20 \\ 15 \end{pmatrix}$	$\equiv \binom{20}{15} = 15504 \pmod{125}$ (the single, boxed figures, left).									
1 11 5	55	165	330	462	462	330	165	55	11	1		Bu	t here it sto	ops. E.g. 3	$f = \binom{3}{2} \not\equiv \binom{21}{14} = 116280 \pmod{7^4}$							
1 12 6	66	220	495	792	924	792	495	220	66	12	1			the circled figures). In fact, the least values p								
-	78	286	715	1287	1716	1716	1287	715	286	78	13	1		for which $\binom{2p-1}{p-1} \equiv 1 \mod p^4$ holds								
	91	364	1001	2002	3003	3432	3003	2002	1001	364	91	14	1		are 16843 and 2124679 (the							
	105	455	1365	3003	5005	6435	6435	5005	3003	1365	455	105	15	1	first two so-called <i>Wolsten</i> -							
	120	560	1820	4368	8008	11440	12870	11440	8008	4368	1820	560	120	16	holme primes).							
	136	680	2380	6188	12376	19448	24310	24310	19448	12376	6188	2380	680	136	Moving deeper into number							
	153	816	3060	8568	18564	31824	43758	48620	43758	31824	18564	8568	3060	816	theory, let $H_{n,m}$ denote the sum							
	171	969	3876	11628	27132	50388	75582	92378	92378	75582	50388	27132	11628	3876	$1 + 1/2^m + 1/3^m + \ldots + 1/n^m$. Then $\frac{1}{2}(H^2 - H^2)$ is the							
		1140	4845	15504	38760	77520	125970	167960	184756	167960	125970	77520	38760	15504	Then $\frac{1}{2} \left(H_{p-1,1}^2 - H_{p-1,2} \right)$ is the							
	210	1330	5985	20349	54264	116280	203490	293930	352716	352716	293930	203490	116280	54264	coefficient of p^2 in the product							
	231	1540	7315	26334	74613	170544	319770	497420	646646	705432	646646	497420	19776	170544	$\left(1+\frac{p}{1}\right)\left(1+\frac{p}{2}\right)\cdots\left(1+\frac{p}{p-1}\right)$							
	253	1//1	8855	33649	100947	245157	490314	817190	1144066	1352078	1352078	1144066	817190	490314	$(2n-1)$ $\stackrel{p-1}{=}$ (n)							
		2024		42504		346104	735471	1307504			2704156	2496144	1961256		and so $\binom{2p-1}{p-1} = \prod_{i=1}^{p-1} \left(1 + \frac{p}{k}\right)$							
1 25 3	205	2300	12650	53130	177100	480700	1081575	2042975	3268760	4457400	5200300	5200300	4457400	3268760	is given mod p^3 by the sum							

 $1 + pH_{p-1,1} + \frac{1}{2}p^2(H_{p-1,1}^2 - H_{p-1,2})$. Now, it may be established that $H_{p-1,1} \equiv 0 \mod p^2$ (i.e. numerator of $H_{p-1,1}$ is divisible by p^2), and $H_{p-1,2} \equiv 0 \mod p$. Substituting into our mod p^3 sum, taking a little care that the fractions behave as they should, this is enough to confirm that p^3 divides $\binom{2p-1}{p-1} - 1$.

Charles Babbage proved in 1819 that p^2 divides $\binom{2p-1}{p-1} - 1$. Joseph Wolstenholme's congruences, both the binomial and the more influential $H_{m,n}$ 'harmonic series' forms, date from 1862.

Weblink: arxiv.org/abs/1111.3057

Further reading: An Introduction to the Theory of Numbers by G.H. Hardy and E.W. Wright, OUP, 6th edition, 2008, chapter 7.