THEOREM OF THE DAY

1 2 1 1															
1	[3		1			The fact that p divides $\binom{2 p-1}{p-1}-1$ for any prime p can be deduced easily from the remarkable theor									
1	4	6	4	1			is congruent, mod p, to the product $\Pi\binom{n_{i}}{k_{i}}$, where the n_{i} and k_{i} are matching pairs of digits in								
1	5	10	10	5	1		and k. Indeed, $\binom{n}{k} \equiv\binom{p n}{p k}$ mod p, since multiplying by p merely contributes an extra								
1	6	15	20	15	6	1									
1	7	21	35	35	21	7	Now take $n=2$ and $k=1$, giving $\binom{2}{1} \equiv\binom{2 p}{p} \bmod p$, or $2 \equiv 2\binom{2 p-1}{p-1} \bmod$								
1	8	28	56	70	56	28	8	1		that, for odd primes $p,\binom{n}{k} \equiv\binom{p n}{p k} \bmod p^{2}$. And indeed we can					
1	9	36	84	126	126	84	36	9	1	for primes $p \geq 5$. For example, taking $n=4$,					
1	10	45	120	210	252	210	120	45	10	1	that $4=\binom{4}{3} \equiv\binom{20}{15}=15504(\bmod 125)$				
1	11	55	165	330	462	462	330	165	55	11	1		3		
1	12	66	220	495	792	924	792	495	220	66	12	1	(the circled fig		
1	13	78	286	715	1287	1716	1716	1287	715	286	78	13	1		
1	14	41	364	1001	2002	3003	3432	3003	2002	1001	364	91	14	1	
1	15	105	455	1365	3003	5005	6435	6435	5005	3003	1365	455	105	15	1
1	16	120	560	1820	4368	8008	11440	12870	11440	8008	4368	1820	560	120	16
1	17	136	680	2380	6188	12376	19448	24310	24310	19448	12376	6188	2380	680	136
1	18	153	816	3060	8568	18564	31824	43758	48620	43758	31824	18564	8568	3060	816
1	19	171	969	3876	11628	27132	50388	75582	92378	92378	75582	50388	27132	11628	3876
1	20	190	1140	4845	15504	38760	77520	125970	167960	184756	167960	125970	77520		15504
1	21	210	1330	5985	20349	54264	116280	203490	293930	352716	352716	293930	203490	16280	54264
1	22	231	1540	7315	26334	74613	170544	319770	497420	646646	705432	646646	497420	19778	170544
1	23	253	1771	8855	33649	100947	245157	490314	817190	1144066	1352078	1352078	1144066	817190	490314
1	24	276	2024	10626	42504	134596	346104	735471	1307504	1961256	2496144	2704156	2496144	1961256	1307504
1	25	300	2300	12650	53130	177100	480700	1081575	2042975	3268760	4457400	5200300	5200300	4457400	3268760

Moving deeper into number theory, let $H_{n, m}$ denote the sum $1+1 / 2^{m}+1 / 3^{m}+\ldots+1 / n^{m}$. Then $\frac{1}{2}\left(H_{p-1,1}^{2}-H_{p-1,2}\right)$ is the coefficient of p^{2} in the product $\left(1+\frac{p}{1}\right)\left(1+\frac{p}{2}\right) \cdots\left(1+\frac{p}{p-1}\right)$ and so $\binom{2 p-1}{p-1}=\prod_{k=1}^{p-1}\left(1+\frac{p}{k}\right)$ is given $\bmod p^{3}$ by the sum $1+p H_{p-1,1}+\frac{1}{2} p^{2}\left(H_{p-1,1}^{2}-H_{p-1,2}\right)$. Now, it may be established that $H_{p-1,1} \equiv 0 \bmod p^{2}$ (i.e. numerator of $H_{p-1,1}$ is divisible by p^{2}), and $H_{p-1,2} \equiv 0 \bmod p$. Substituting into our $\bmod p^{3}$ sum, taking a little care that the fractions behave as they should, this is enough to confirm that p^{3} divides $\binom{2 p-1}{p-1}-1$.

Charles Babbage proved in 1819 that p^{2} divides $\binom{2 p-1}{p-1}-1$. Joseph Wolstenholme's congruences, both the binomial and the more influential $H_{m, n}$ 'harmonic series' forms, date from 1862.

Weblink: arxiv.org/abs/1111.3057
Further reading: An Introduction to the Theory of Numbers by G.H. Hardy and E.W. Wright, OUP, 6th edition, 2008, chapter 7.

