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1. Iniroduction

Edouard Zeckendorf (1901-1983) was a Belgian amateur mathematician ([11], p.144). He
mm[lﬁ]mrmmdMﬂMEmﬂdﬁnﬁmdmmﬁw
ﬁmmmmmmmmwmmmmmﬁﬁ
is used to represent 1, rather than F (which slso equals 1). Each natural mumber can be
r@mmimam&{nﬁmﬁﬂwﬁimhemmdﬂuam&h&mmm
ﬁ.‘a.tﬁnga.tl.fmmph,i!?#ﬂ+ﬂ+ﬂmbem&ad{ﬁhmduinﬂmmingw.the
right) as 0101001. In data transmission the most significant 1 can be followed by 1 (since 11
mmﬁﬁhawmﬂ}mhﬁiﬁt&m&uﬂ&anmbmmthﬂﬂmﬂd
get transmitted as the sclf limiting bii-string 01010011. This varisblelength representation
of natural mumbers has béen investigated as & potential method for compression of data in
transmission [1] [7]. i :

fo Zeckendorf arithmetic, |addition by 1 iz more complicated than in binery arithmetic, as
wss explained by Graham, Knuth & Patashaik ([9], pp. 252-283). Addition, subtraction and
mﬂﬁpuuummﬁmmhdhinﬁugwmm[ﬂ;mﬂmmmmmgmm
first treatment of all 4 badic arithmetic operations in Zeckendorf arithmetic [6], which he has
tested with computer programs. Fenwick comments that “this arithmetic is unlikely to remain
more then & curiosity” [6]. since it is much more complex than standard binary arithmetic and
the Zeckendorf numersls ake bulkier then standard binary numerals.
P

Another sst of algorithmsfor Zeckendosf arithmetic has been implemented by the author, s
amtdmmmmxgm.mpmmmmamdmmm
mﬁngthmmavaihhlﬂgﬁm@themhnrbfe-maﬂrm

fo
2. Ordering Zeckendorf Numerals

B
Thmt:=y.juﬂcm:iu§hdh§ﬂ'aﬂmﬁpﬂuﬁngm¢mfmaﬁdmhhxmdymaquﬂ
Tht&slz?ﬂ.jl:ﬂche:kfheﬂtuthﬂhit—dzmmmml.

To add 1 to & Zeckendosf numeral ([9], pp. 282-283), if its bit-stresm starts with 0 then
comvest that to 1 (with Fj = 1); bat if it starts with 10 then convert that to 01 (with F = 2).
If the 1 which hss been inserted is followed by 10, then that 110 must be standardized to 001

{by&e&tammnumm{mhﬁmﬁxﬁbmm];mdthﬂmduﬁmﬁmmbe
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repeated if necessary, that is, any bit-sequence 11010 . .. 10100 {starting st any positive index)
must be converted to 00000. . . 00010. 'I'hﬂreptemnt-a-ﬁmnfanr: Zeckendor] numeral is
unique. Thus, adding 1 to a k-digit Zeckendorf numeral can require {k) elementary operations
(of counting and Boolean operstions). That is similer to adding 1 k-bit binary arithmetic,
where the carry can propagate throngh up to k — 1 consecutive unit bits.

If & Zeckendorf numeral p has its most significant 1 at index 4 then is unchanged by adding
l,uﬂlmp+1=Fi+1,inw!:jd1ﬁnaethah1du:immb;I. nefural mumber A > u
mhmo&med&muhrrepeaudacﬂiﬁumbfl,mmnfw' the highest index either
remains constant or else increases by 1. Hence, the highest index for A is grester than or equal
to the highest index for g Therefore p < A if and only if, in their Zeckendorf representations
with coefficients 0 or 1, ' 3

A= YX%A k=Y %R ®
=2 =] ]

1'E=&fura]1i}hﬁxmhzi,bﬂﬁélmdh=ﬁ- Thus, a simple program can
be written for a Boolean function less(xy) which yields true if z < y but otherwise yields
false, daing & single downward scan through the bit-streams of Zbckendorf coefficients for =
and y- From that function, other simple functions can be written o test = > ¥, r > yand
Ty

greater= less(yx), ge=not less(xy), le= ge(vx)

3. Addition and Subtraction

3.1 Addition

In the Pascal procedure for addition of y into =, for each digit 1 5t index § in y add F; into
z. When a digit 0 (at index i in ) gets 1 added into if, if that new 1 is followed by 10 then
standardization must be applied from index § upwards; but ctherwise, if the new bit-stream
from index § — 1 is 110, then standardization must be spplied
gma&hdmluhdﬂLthmEEmﬂﬁhemphmdhrFﬁi+
the bit-stream 010 from index i — 1 must be converted to 00L, and §
standardization mmst be applied from index £ + 1, costing O{k) elements
to add in F, o, then this process must be applied recursively, with O(k} stages. Thus, even
increasing a single Zeckendorf coefficient by 1 costs (k) elementary
adding a pair of k-digit Zeckendorf numerals by the Pascal
operations ! :

3.2 Subiraction

Zeckendorf subtrsction by 1 is very simple. Consider = F + Fy + --- + Fi, where the
subscripts are in sirictly increasing order. If o = 2 then just F. With a > 2 then
p—1=(F,—1)+ FK+---+ F.. From the 3-term recurence

F.=Fa+Fy = FeutFastFou
= Fogt+Fs+Foa+Foqx ="

- F+ F; + F; (for even o) ; ,
{ﬂ'l'ﬂ-l-ﬁl{ﬁ:tnéiu-} * +F:.-5-I;F._;+F_1, (2)
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and hence
F-1=

This produces 2 — 1 in

Consider the subtraction
each digit 1 at index § in
current value of x) gets 1
digit ot indexiofzis 0

i+ 1 upwards, to find the

Hence, when h — i is even
Fy =

but if & — i is odd then

F—

Thus, in subtracting F; fn
elementary operations. Bt if

at a cost O(F%).

Hence, subtracting & pair

glementary operations.

4. Russian Peasant B

Before the Russian
algorithm (in Pascal)
mumber.
if odd(n) then ==
while n>=0 do
begin x= x+x; if
end; z==2".

‘Ihﬁaigcuﬂhmmb&imamehﬂiaﬁ
ptions of either if-statement (k= 0,1,2,..

tation of n. After k exec

Fx-frﬂ-{ﬁrmn}
F; + F, (for 0dd a)

d Zeckendorf form, with no consecutive Fibonacel numbers.

}+~--+FH+F._;+F.._1, (3)

E@ﬂdmfnmmlﬁx-y.whsatxgy,wﬂhkdigﬁsmn Fac
, we need to subtract F; from z. When a digit 1 (st index i in the
from it then that digit in  is replaced by 0 . Bat if the
lihmhmhtadaiﬁunﬂ,mmmﬁem&mhdﬂ
i with lesst index h > i As in (2),

(4

Fusi+Fgu+Fgust o+ st Fe
iR = Fun+Fpa+-+ Fs+Fa+ F (5)
{6)

o 7, i h — i is even then it can be done by (5) at the cost of O(K)

F; = F§—1+Fi+=:+“‘+Fi—i+FH+Fh—l~

&h%dﬁtﬁuﬂﬁmﬂhthe?mlmmmmi’}

i ;:nlﬂlT,mevﬁiustaﬁammhuimﬁndthﬂmm
mnﬂahmﬂhmqmuh:genmhﬂﬂmmﬂrﬁefuﬂmmg
z = Tn, where n is any non-negative integer and £ is any

r:al:niea:=ﬂ; o= ndiv X

bdd{fn}thantns-l-r. o= n div 2

generating successively the digits in the base-2 represen-
_) the current value of T is

binary expansion of the ini

value of = if and only i
ko 5 iz less than of &g

and the current value of n is the quotient when the mitisl value has
mﬁmvﬁmdnhuﬂd,ifmdmlyif:ﬁhumﬁaMlmihe
ial value of n; and henoe the sum is to be increased by the current
Boolean function odd(n) yields true. The number of additions
h?hﬂmbﬂﬂdmhﬁngsd::.whid:h]_hginj.

This Russian Peassot Multiplication sleorithm is independent of any written numerals, and

it is independent of the
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needs only to be able to decide whether n is odd (and whether n = 0), to halve n (discarding
remainder 1 when n iz odd), and to add r into & n@mber. ;

Less systematic versions of Russian Peasant Multiplication {withou halving} were used in
Ancient Egypt for multiplication and division {[5], pp. 14-20). Ancient Indis, powers =
were computed by an algorithm very similar to Russian Peasant Muj : .

addition being replsced by multiplication and the initial vahue 0 beisg replaced by 1. The RSA
cryptographic algorithm requires efficient computation of == mod m for very large integers

operation of muliiphcation {mod m). More generally, I'.hemnnbu' ;hgnpa—ﬂm-l—mhe
r@l&nﬂbjdmﬂanymdmthmmmﬁ = i

beawhumﬂﬂnhmmdﬁuaﬂammﬂmmmwe
guaternion), and@mﬁbathaﬂpamﬂfmﬂuphmtmd naly
nih power of the polynomisl x. |

If 3 and 1 sre represented in binary notation, then Russian Peassht Multiplication is closely
similar to the standard algorithm for multiplication in binary arithmet i
ﬂ:ﬂi}uhﬂlﬂgn&f:mdmmhydﬁﬂugaﬂbiwjrd@mmﬂ

n are operated oo directly. :

4.1 Multiplieation in Zeckendorf Arithmetic

The existing algorithms for Zeckendorf multiplication [6] {8] involv
the Zeckendorf coefficients. But Zeckendorf numerals can be mu 'mesr?mphrhfﬂman
operations.

4.1.1. Parity of Zeckendorf{ Numerals !
hmmmmnnmmmm

n= Eaﬁ (% =n.1}.§ (7
fml

for a snitable npper limit k, where Z; = 0 in & standard numeral

Since Fy = 0 which is even, and both F; and F; equal 1 which isodd,

on the defining 3-term recurrence relation that F; is even if and if i = 3h for some integer
h. Therefore, replacing each coefficient Zz, m (1) by 0 would not the parity of the sum of

Fibonacci numbers. Thus the parity of n equals the parity of 3, .o { Zaas1 Fania + ZaneaFansn)s
where both Fy .y and Fu - are odd. Operating mod 2, this :

n= Y (Zwmer+ Zunsa) mdz ()
=T 5

For each h, the term in parentheses will equal 1 Zysy # Zunsa, but otherwise that sum is
even. Thus, the Boolean value of odd(n) csn be computed ‘as with the Zeckendorf
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coefficients represented by a Boolean array ¢ Tf n is zero then odd:= false, but for pesitive n
odd:= false; b=0;
repeat if sfi+1]<>%i+2] then odd:= not odd; ©=i+3
until i>=k

mmmﬁnmﬁwmwm@mmnmm

41.2. Halving nonstandard Eed:endnrf Numcrals

In crder to balve n, it is Wmiwﬂwwmﬂinwhﬁ
consecutive Fibonacci can appeas, so that the bit-siream can be any pattern of 0 and
1 and also F} is accepted, so that the index in the bit-stream starts with 1 rather than 2.
n:u@mmm@{n]mﬁxmmwmm
Zpn+fwp=2 = 0 mod 2. During the operation of ihe
mﬁmammmmﬂ,l,zma;mmmmﬂﬁ
of the new m are all 0 or 1, so that the new n can be represented

" by the Boolean array =. index for ponstandard Zeckendorf starts at 1, since otherwise we

j do if 2li] then cfff= 1 else cfi}=0.

mmmmém-mmuMawmql1m1ﬁnﬁ

odd. To do that 3 i‘ﬁxi&nmjdmtnﬂ,ifc[ﬁ]kuﬂdthmﬂwﬁﬂm&hth&

sum represented by the :nnnnrc.luthumm,ralﬂmﬂ{mm]hyﬁ_l+ﬁ-g,mthat

cfi] gets reduced to O or 2 b@ﬁcﬂl}aﬂcﬁ—ﬂ}gﬁmml,cmmtmmﬁm

for the new velue of n by halvi s each coefficient cfi] (for i>1). Do not actually subtract 1 from

cfil and do not perform miﬂamaticdi?'mim,ﬁﬂhu,hmﬂfﬂmﬂndmmz:
fori=k 2 do zfij=clil>1.

%wabﬁtMﬂ@EMWMG{k}wm

]hshahnngnlg:mhmn?erﬂummmmdﬂdzﬂmdmfmma]ﬂ, and so the cycle of
Mm@mMMPMHﬂtﬁimﬁmmhepafmmﬂmtﬁsmm,wﬂhmtmﬂﬁng
to standardize the output] ' :

I this manner, all of the operations in Russian Peasant Multiplication on the Zeckendorf
mmerals for = and n h&ilhnpmtedinchal,htmn&'addiﬁmﬂmﬂm
and Boolean operations.

4.2 Standardizing nonstandard Zeckendorf Numerals

If the nonstandard output the procedure for halving is to be operated on by other procedures,
Mitmmm:ﬁiMWmmmmmmhmw
2 Pascal procedure, whichscans the bit-stream with index i decreasing to 1. Each time that 11
isgnmunbundathdiﬂuimdf#+lthmﬂmmtheahududimd&mmﬂmiupmd,mﬁng
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O(k) elementary operstions, as in §3.1. After standardizing down to i = 1, if the bit-stream
starts with 10 then that must be replaced by 01 (since Fy = Fy = 1), and if the next bit is 1
then one more standardization must be applied, from index 2 upwards. Thus, standardization
costs O(k*) elementary operations.

5. Anclent Egyptian Division

For non-negative integer numerator n and pesitive integer denominator d, the operation of
integer division produces the unique quotient ¢ and remainder v such that n = qd + r, with
g > 0and 0 < r < d. The existing division algorithm [6] requires intricate operations upon the
Zeckendorf coefficients. But it is simpler {0 use a systematic version of an ancient Egyptian
method for division, as in Problem 25 of the Rhind Mathematical Papyrus ([5], p.16).

Construct {once only) an array p with gy = 2% set i = 0 and p; = 1, and then repeat =i+
75 = p;_y + Py until py Is large enough for your purposes. That array can then be used in
any division of n by d by the following algorithm, which coastructs (by repeated addition) an
array ¢ with & = 2*d. The quotient g (initially set at () effectively gets each 1 in its binary
representation inserted in decreasing place-value, from the array p.
r=n; q=0 =0 ti=4d
while tfil<r do begin i:= i+1; tfil= t[i-1] + tfi-1]
{ti] = 2'd } end; {thi2r>ti1] }
repeat while r<tli] do i= F1; {Now, tfi+1]>r>tfi] }
@= qipfil; = r-tfi]
{Puts g;=1, in its binary expansion }
until r<d . -

Then g i= the quotient and r is the remainder.

Ii n < d then g = 0 and r = d. But, for n = d, the oumber of subtractions from 7 equals the
number of additions into g, which is less than or equal to the number of doublings of d; and
that equals [logs, g]- :

Tf the pumbers are represented in binary notation, then the Egyptian algorithm is closely
equivalent to the standard binary arithmetic algorithm for division. In binary arithmetic the
doublings of ¢ are done by shifting all digits up one place, and each digit 1 in ¢ geis inserted
directly, without needing any table of powers of 2.

5.1 Division in Feckendorf Arithmetic

Tn Zeckendorf arithmetic, the additions and subtractions involving p, g, v and ¢ can be done by
the existing algorithms (in [6], or the Pascal procedures), and = simple program (as in §2) can
test for r < & In this manner, the Ancient Egyptian method for division has been implemented
in Pascal.

6. Signed Zeckendorf Arithmetic

For negative numbers in Zeckendorf form, Fenwick proposed a form of complementing, general-
izad from binary arithmetic with 2s-complement. But that representation of negative nummbers
proves to be rather cumbersome [6].
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Accordingly, it is conventent to generalize the unsigned Zeckendorf numerals by using sign and
magnitude representation. Extend the bit-stream for z to start at index 0, with 2{0] = false for
zzﬂbuttmefmz{ﬂ,mthﬂdgn&dzadrmdmfmhmaﬂdmmmfaise,fn.'rmindmﬂ
up. Nonstandard Zeckendorf numerals use z{1] for Fy, but (1] is not used in unsigned standard
Zockendorf numerals. If z does have a sign at index @, the bit-stream from index 2 up gives i=
in unelgned Zeckendorf form.

Tbaddaig;u&dﬂackandmﬁnumeralsa+b=c,ifuandbh.w&thammaﬁgasmtculu|+|b|,
then give ¢ the sign of a. If a and b have different signs; then if |a] = |bl set ¢ = |a} — }b] and
then give ¢ the sign of a, but otherwise set ¢ = [b|—|al and then give ¢ the sign of b. To subiract
signed Zeckendorf numerals ¢ = a — b, if b= 0 then ¢-= @, but otherwise reverse the sign of b
and then add a+ (—5).

To multiply signed Zackendorf numerals ab = ¢, set ¢ = |a|x |b], and then fix the sign by <[0}:=
a[0}<>bl0]. Then, if unsigned ¢ = 0, set the sign as non-negative: e0]:= false. Signed division
eonld be handled in & similar manner.

7. Complexity of Zeckendorf Arithmetic

For numbers written in any integer base § > 1, addition or subtraction of & pair of m-digit

numbers cosis Om) elementary operations on digits 0, 1,..... =1, and the standard slgorithms
for multiplication and for division cost O{m®) elementary cperations.

7.1 Daniel Bernoulli’s formula for Fibonaccl numbers

Daniel Bernoulli the 1st (1700-1782) published in 1732 an important paper in which {amongst
much else) he published ([3], p.52) the explicit formula for Fs, as: '

(- ()s

(He nsed the colon as the division symbol.)

Daniel Bernoulli’s formula for the Fibonacei oumbers has often been mis-named (for example,
[8] and [8], p-285) after Binet, who published it 111 years afier Daniel Bernoulli did [14].

m terms of the golden ratio ¢ = (1 + /5)/2, Daniel Bernoulli’s formula can be rewritten as
F= (#-(—-d) V6 (10)

T 1.1, Golden Numbers ~

Numbers can be represented in the base ¢, with digits 0 and 1. Pusitive integers are represented
exactly with a finite number of digits after the point; for example, 2 = 10-01 and 5 = 1000- 1001
(2] (9] vol.1, 1.2.8, Ex. 35).

1(eorge Bergman was 12 years when he wrote that paper
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Denote the Zeckendorf numeral for z as

s = Y %R, (1)
fu

- %Ea{#—u—ﬂ*)
- —Za# ?zz,l o = X ) (12)

Here, ¥{z) is the base-d number whose coefficients equal the C:ll'l'ﬂﬂ]}ﬂﬂdjﬂg Ee?.]m}darf coeffi-
cients of z, and

ola) = %Em-w (13)
D

The real mumber ¥{z)/+5 could be called the Golden Number for the positive integer 2.

For all m-digit Zeckendorf mumerals, the maximum modulus of p(z) is given by 2 = Fpn — 1,
whose Zeckendorf coefficients are given by (3).

Em is_emthen

p(Fan=1) = [(1- ¢+ (1= 9) 4+ (1- 4] /5
C(1=¢)P 11—+

< u-a-em - VBRI o
Since ¢* = ¢ + 1, this inequality reduces to
2—¢ 2 — ¢* d=1
S Fe-n " BE-a T
_ VBWE-1) _ 5-+6 |
== 1w = <" (15)
Similarly, if m is odd then
PP =1) = [(1— g+ (1= @)+ + (1-9)"] V5, (16)
a0 thaf
@-1-¢P _ (#-1)(5-5)
—plz) < e - 0 < 0-2. (17)
Hence, every natural number z equals the Golden Number x(2)/+/5, rounded to the nearest
integer.
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7.2 Comparison of Zeckendorf Arithmetic with binary arithmetic

For numbers written in any integer base § > 1, the largest m-digit number is §™ — 1. For
mzmbers written in some other base §, & = ™, where p = m(log 2/ log 4). Hence, comversion
of an m-diglt integer in bass  to base § requires O(m) digits in base . Hence, the Zeckendori
representation of an m-digit number in base § requires approximately m(log B/ log &) digits
in Zeckendorf representation. For example, an m-bit binary oumber requires approximately
[1-46m] + 2 digits in Zeckendorf representation.

Conversion of & k-digit Zeckendorf numeral to standard binary form (or conversely} costs Ok}
additions or subtractions of binary mumbers with O{k) bits, or O(k?) elementary operations.
Hence, if a pair of Zeckendorf mumerals were converted to binary form, then addition or subtrac-
tion performed in binary arithmetic would cost O(k) elementary operations, and multiplication
o division would cost O(k®). If the result of the binary arithmetic were converted to Zeck-
endorf form, then the cost for each basic arithmetic operation on Zeckendorf mumersls (via
binary arithmetic) would be O(k®} elementary operations. But the Pascal procedures for addi-
tion and subtraction each cost O(k?) elementary operations. In Russian Peasant Multiplication
the mmmber of additions is O(%), and in Egyptian division the number of additions or subirac-
tions is O(k); and hence multiplication or division of k-digit Zeckendorf numerals costs Ok}
elementary operations. '

However, arithmetic operations on large binary integers (beyond the domain of arithmetic
hardware) usually are done by software, which multiplies by a large factor the time required
for elementary operations on the digits. Consequently, the actual ratio of cost of Zeckendorf
sddition or subtraction to cost of binary operations might be much smaller than this simple
counting of elementary operations on digits might suggest.

If algorithms for addition or subtraction of Zeckendorf numersls could be devised with cost of

lower order (for example, O{k log k) elementary operations) then there would be no need to
consider conversion to and from binary numerals for doing arithmetic on Zeckendorf numerals.

7.2.1. Fibonacel p—codes

Alexey P. Stalhov has proposed [12,pp.634-636]° a generalization of Zeckendorf numerals to
“Fibonacci p-codes™ for representing integers.

1 wish to thank Peter Fenwick, for introducing me to the concept of Zeckendorf arithmetic.
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MathMedia

Newsreader on Channel 3 (NBN) News, 6:00 p.m. 3 September 2003: There is a one—rillion
to one chance that in 2014, an astercid heading this way will collide with earth. The second
newsreader interjected: There is a greater chance that you will win Lotto!
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GARRY TEE D.Sc

In Augusi 2008, Garry Tee was swarded an honorary doctorate of science from Auckland
University of Technology, New Zealand.

The fallowing is an extract from a tribute to Garry Tee written by Prof Graeme Wake and Prof
Lag Woods.

GmyT&’smmedswﬂhemplmdtmmmﬂﬂmﬁhwbmmgﬂmd
by the Auckland University of Technology. Besides his research work in numerical analysis, he
has made many important contributions to the history of science, particularly of mathematics
and computing.

Garry has, almost single-handedly, pioneered the study of scientists in and from New Zealand.
One of Garry's early historical pieces is & well-researched account of the distingised mathemati-
cian A.C. Altlen who hailed from New Zealand, bt spent muck of his career in Edinburgh. A
charncteristic contribution is his article in Auckland Minds on the mathematician H_G. Forder
whose genercus bequest supports the London Mathematical Society’s Forder Lecturer on tour in
New Zealand. Other eminent subjects on whom Garry has written with considerable erndition
are Farnest Rutherford, Leslie John Comrie, and Veughan F.R. Jomes.

Garry was born in 1932 2t Wanganni and at the age of 11 attended Seddon Memorial Technical
College (SMTC) in Auclkland to undertake an industrial science course. SMTC was a trade
school that slowly evolved into a Technical Institute, then into the Auckland Institute of Tech-
nology, finally in 2001, becoming the Auckland University of Technology. So, appropriately
enough for someone with interests in history, Garry Tee is amongst the first to be honoured by
this pew University.

After graduating from Auckland University College (it became a full University in the 1950s),
Carry's first employment was in computing with an oil exploration team in northwest Anstralia
Tn 1058, sensing that electronic digitial computers were poised to assume incressing importance,
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proved good grounding to becoming & foundation member of the Department of Mathematics
at the University of Lancaster. After a decade in the UK, he returned to Auckland in 1968,
joining the University's Department of Mathematics, where he attained emeritus status in 1999,
having also been a founder member of the Department of Computer Science. The New Zealand
Mathematical Society conferred honorary life membership on him in 1998 in recognition of
his outstanding services to mathematies in New Zesland and to the Society. He was guick to
hecome & Fallow of the Institute of Mathematics and its Applications in keeping with his sense
of a professional community, of which tuly he is himself 2 gervant and ornament.

With all his friends — and with the Institute of Mathematics and its Applications - we salute
(Garry Tee, as & most worthy and deserving recipient of the Honorary Doctorate of Science
from the Auckland University of Technology; and we warmly congratulate the Council of the
University in making an award that will give so much satisfaction and pleasure in the way it
recognizes the professional values epitomised by Garry Tee.
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