THEOREM OF THE DAY

The Existence Theorem for Bachelor Latin Squares Bachelor latin squares exist for all orders except
for 1 and 3 .

1	2	3	4	5	6	7	8	9
5	6	4	8	9	7	2	3	1
9	7	8	3	1	2	6	4	5
4	5	6	7	8	9	1	2	3
8	9	7	2	3	1	5	6	4
3	1	2	6	4	5	9	7	8
7	8	9	1	2	3	4	5	6
2	3	1	5	6	4	8	9	7
6	4	5	9	7	8	3	1	2

(2) Orthogonal Mates

A latin square of order n contains n symbols repeated n times so as to appear once in each row and column of an $n \times n$ grid. Completed sudoku puzzles are a special type of latin square of order 9 . Some latin squares may be 'decomposed' into transversals, as in our puzzle here. In this case alone, an orthogonal mate may be constructed by replacing all symbols in the i-th transversal with the i-th symbol. Latin squares with no ortho
(1) A new puzzle from a completed sudoku! Each 9×9 grid on the right is a transversal: it contains the numbers 1 to 9 , with one number in each row and column. Superimposing the nine transversals must reconstruct

gonal mates are called bachelors!

	0	1	2	3	4
0	1	0	2	3	4
1	0	2	1	4	3
2	2	3	4	0	1
3	3	4	0	1	2
4	4	1	3	2	0

(3) Confirmed Bachelors

A latin square may have a cell which can lie in no transversal. Then it may be called a confirmed bachelor since it can certainly never decompose into transversals! In the above
5×5 latin square the symbols are $0, \ldots, 4$ and the rows and columns are indexed similarly. Write $c_{i j}$ for the number in cell (i, j), indexed by row i and column j; the red cell in the middle of the last row, for example, is specified by writing $c_{4,2}=3$. Now, for cell (i, j), write $\Delta_{i j}=c_{i j}-i-j$.
Lemma If T is a transversal in an order n latin square, and n is odd, then the sum of the $\Delta_{i j}$, taken over the cells of T, is a multiple of n.
Now suppose that a transversal T of our 5×5 latin square contains the red cell. By definition, T may contain no other cell from row 4 or column 2 ; nor the other cell having value 3 ; nor two from cells $(0,0),(0,1)$ and $(1,0)$. But $\Delta_{4,2}=3-4-2=-3$, and all unshaded cells have $\Delta=0$, so we see that it is impossible for T to satisfy the Lemma. Conclusion: our latin square is a confirmed bachelor! The question of whether bachelor squares exist for all orders (except $n=1$ and $n=3$, which do not admit bachelors) goes back to Leonhard Euler who observed in 1779 that the addition table modulo n has no transversals when n is even. The case of odd-order latin squares is less tractable: a conjecture attributed to HJ Ryser says that these squares always have at least one transversal. However, Henry B. Mann showed in 1944 that bachelors exist for all $n \equiv 1(\bmod 4)$. The case $n \equiv 3(\bmod 4)$ was resolved more than 60 years later, in 2006, by Anthony B Evans and, independently, by Ian Wanless and Bridget Webb, who used the simple lemma, above right, to show that confirmed bachelors exist for all $n \neq 1,3$.

Web link: arxiv.org/abs/0903.5142. The sudoku transversals puzzle is solved here.
Further reading: Latin Squares: New Developments in the Theory and Applications by J. Dénes and A.D. Keedwell, North-Holland, 1991.

