THEOREM OF THE DAY

The 1-2-3 Conjecture Call a graph, G, degree colourable if no two adjacent vertices have the same degree. If, by adjusting edge multiplicities in G so that no edge multiplicity exceeds k, we can create a degree colourable graph, then say that G is k-degree colourable. Now there exists a positive integer constant K such that any connected graph on at least three vertices is K-degree colourable.

A graph based on the affine plane of order 3: $K \geq 1$

The Petersen graph: $K \geq 2$

The n-cycle: $K \geq 3$ unless $\boldsymbol{n} \equiv \mathbf{0}(\bmod 4)$

The degree of a vertex is the number of edges incident with that vertex. Above left, a graphical representation of the affine plane of order 3 is already properly coloured by its degrees. In the middle, the Petersen graph is clearly not, since it is 3 -regular (every vertex has degree 3) but doubling five suitably chosen edges shows that it is 2 -degree colourable. And, right, doubling edges in the n-cycle is not sufficient, unless n is a multiple of 4 , but degree colourability is 3 : tripling edges is sufficient. It might appear that we will find examples requiring ever higher edge multiplicities, but the theorem says not: there is a constant K which bounds the required multiplicities for all possible graphs; and the 1-2-3-Conjectures says $K=3$. This conjecture was resolved in 2024 by Ralph Keusch.

```
Construction notes: 2002: Michal Karonski, Thomasz Łuczak and Andrew Thomason conjecture that K exists and equals 3. Prove it
    for 3-colourable graphs. The conjecture acquires the name "1-2-3 Conjecture".
    2004: Louigi Addario-Berry, Ketan Dalal, Colin McDiarmid, Bruce Reed and Thomason: K exists and K=30 is sufficient.
    2004: Addario-Berry, Dalal and Reed: reduce K to 16. (In 2008: they show k \leq 2 for 'almost all' graphs).
    2008: Tao Wang and Qinglin Yu reduce K to 13.
    2009: Maciej Kalkowski, Michał Karoński and Florian Pfender reduce K to 5.
    2024: Ralph Keusch resolves the conjecture by showing that k = 3.
```

