THEOREM OF THE DAY

The Erdốs-Ko-Rado Theorem Let n and k be positive integers, with $n \geq 2 k$. In a set of cardinality n, a family of distinct subsets of cardinality k, no two of which are disjoint, can have at most $\binom{n-1}{k-1}$ members.

In our illustration, $n=8$ and $k=4$. Following the ingenious 1972 proof by Gyula O.H. Katona, we arrange permutations of $1, \ldots, 8$ cyclically: fixing 1 there are $(n-1)!=7$! such arrangements; two are shown above. If they label the edges of the 8 -cycle, as shown, then a sequence of four consecutive edges produces a subset of $\{1,2, \ldots, 8\}$ of cardinality 4 . And we can find at most $k=4$ such subsets satisfying the condition that any two overlap in at least one edge: for the cycle, above left, there are a total of eight sets corresponding to consecutive four-edge sequences; two are highlighted, and two more can be added before we start getting disjoint sets. On the right, the whole thing is repeated but using a different permutation.
Sum over all $(n-1)$! cyclically arranged permutations, each contributing k overlapping sets. If we are lucky we will get a family with the maximum possible total of $k(n-1)$! overlapping sets. But certainly this will involve double counting some sets: between the two permutations shown above we have already counted $\{3,4,5,6\}$ twice. But we can count how often this happens: each set has k ! arrangements leaving ($n-k$)! arrangements to complete a permutation. So our family of sets can have no pair disjoint with at most $k(n-1)!/ k!(n-k)!=\binom{n-1}{k-1}$ members. Note that the bound is easily achieved by joining $\{n\}$ to every $(k-1)$-subset of $\{1, \ldots, n-1\}$.

Paul Erdős, Chao Ko and Richard Rado proved this fundamental theorem of extremal set theory in 1938.
Web link: www.fq.math.ca/48-2.html: the paper by Butler, Horn and Tressler.
\longrightarrow Further reading: Extremal Combinatorics with Applications in Computer Science by Stasys Jukna, Springer, 2 nd edition, 2011 , chapter 7.

