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The Erdős–Ko–Rado TheoremLet n and k be positive integers, with n ≥ 2k. In a set of cardinality n, a
family of distinct subsets of cardinality k, no two of which are disjoint, can have at most

(

n−1
k−1

)

members.

In our illustration,n = 8 andk = 4. Following the ingenious 1972 proof by Gyula O.H. Katona, we arrange permutations of 1, . . . , 8 cyclically: fixing 1 there are
(n − 1)! = 7! such arrangements; two are shown above. If they label the edges of the 8-cycle, as shown, then a sequence of four consecutive edges produces a subset
of {1, 2, . . . , 8} of cardinality 4. And we can find at mostk = 4 such subsets satisfying the condition that any two overlapin at least one edge: for the cycle, above left,
there are a total of eight sets corresponding to consecutivefour-edge sequences; two are highlighted, and two more can be added before we start getting disjoint sets.
On the right, the whole thing is repeated but using a different permutation.
Sum over all (n − 1)! cyclically arranged permutations, each contributingk overlapping sets. If we are lucky we will get a family with themaximum possible total of
k(n − 1)! overlapping sets. But certainly this will involve double counting some sets: between the two permutations shown above we have already counted{3, 4, 5, 6}
twice. But we can count how often this happens: each set hask! arrangements leaving (n− k)! arrangements to complete a permutation. So our family of sets can have
no pair disjoint with at mostk(n − 1)!/k!(n − k)! =

(

n−1
k−1

)

members. Note that the bound is easily achieved by joining{n} to every (k − 1)-subset of{1, . . . , n − 1}.

Paul Erd̋os, Chao Ko and Richard Rado proved this fundamental theoremof extremal set theory in 1938.
Web link: www.fq.math.ca/48-2.html: the paper by Butler, Horn and Tressler.
Further reading: Extremal Combinatorics with Applications in Computer Science by Stasys Jukna, Springer, 2nd edition, 2011, chapter 7.
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