THEOREM OF THE DAY

The Pólya–Redfield Enumeration Theorem Denote by $Z(G, \Omega; s_1, ..., s_t)$ the cycle index of a permutation group G acting on a set Ω . For a set of distinct invariants $L = \{x_1, ..., x_n\}$, denote by $x^{(k)}$, k = 1, ..., t, the formal sum $x_1^k + ... + x_n^k$. Then the number of different ways in which Ω may be labelled with elements of L up to symmetry under the action of G is enumerated by $Z(G, \Omega; x, x^{(2)}, ..., x^{(t)})$.

We construct the cycle index for Ω_V , the set of vertices of the regular tetrahedron, and for Ω_E , its set of edges. The group acting on these sets will be the rotational symmetries of the tetrahedron, which is the alternating group A_4 . As an abstract group, A_4 may be defined as multiplication of the twelve even permutations of $\{1, \ldots, 4\}$: (1)(2)(3)(4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 2 3)(4), (1 3 2)(4), (1 2 4)(3), (1 4 2)(3), (1 3 4)(2), (1 4 3)(2), (1)(2 4 3)

('even' by virtue of their numbers of disjoint cycles having the same parity as the permuted set, given that 1-cycles are listed, as above). If the vertices are labelled 1,..., 4, as above left, then our even permutations directly represent the rotational symmetries of the tetrahedron: for example, (1 2)(3 4) is a half-rotation about an axis through the midpoints of edges *a* and *d*. The cycle index encodes these symmetries in terms of their cycle lengths: s_i records cycles of length *i*, hence s_1^4 records a permutation of four 1-cycles (i.e. (1)(2)(3)(4)); $3s_2^2$ records three pairs of 2-cycles; $8s_1s_3$ records eight permutations with a 1-cycle and a 3-cycle. And finally $Z(A_4, \Omega_V; s_1, s_2, s_3)$ averages these over the whole group to give $\frac{1}{12}(s_1^4 + 3s_2^2 + 8s_1s_3)$. Now we may enumerate, say, in how many ways the vertices may be coloured red, *r*, and blue, *b*, up to symmetry: $Z(A_4, \Omega_V; r + b, r^2 + b^2, r^3 + b^3) = b^4 + b^3r + b^2r^2 + br^3 + r^4$. The coefficient of $b^i r^j$ counts colourings with *i* blue vertices and *j* red ones: we see that the colouring of the tetrahedron above centre is unique, up to symmetry. When the tetrahedral symmetries act on edges instead of vertices the group is still A_4 but the disjoint cycle structures have changed and this is reflected in a different cycle index (see above left again; this time 1-cycles are omitted for conciseness):

1, $(a \ d)(b \ e)$, $(a \ d)(c \ f)$, $(b \ e)(c \ f)$, $(a \ b \ c)(d \ e \ f)$, $(a \ b \ f)(c \ d \ e)$, $(a \ c \ b)(d \ f \ e)$, $(a \ c \ c)(b \ d \ f)$, $(a \ f \ b)(c \ e \ d)$, $(a \ f \ e)(b \ d \ c) \rightarrow \frac{1}{12}(s_1^6 + 3s_1^2s_2^2 + 8s_3^2)$. This time the calculation reveals that the half-red-half-blue colouring, above right, is one of four possibilities up to symmetry.

The 1937 rediscovery by George Pólya of this neglected 1927 result of J. Howard Redfield turned it into a classic of combinatorics. Web link: crypto.stanford.edu/pbc/notes/polya/; the Redfield story: match.pmf.kg.ac.rs/content46.htm, the article by E. Keith Lloyd. Further reading: *Combinatorics: Ancient and Modern* by Robin J. Wilson and John J. Watkins, OUP, 2013, Chapter 12.