THEOREM OF THE DAY

The Pólya-Redfield Enumeration Theorem Denote by $Z\left(G, \Omega ; s_{1}, \ldots, s_{t}\right)$ the cycle index of a permutation group G acting on a set Ω. For a set of distinct invariants $L=\left\{x_{1}, \ldots, x_{n}\right\}$, denote by $x^{(k)}, k=1, \ldots, t$, the formal sum $x_{1}^{k}+\ldots+x_{n}^{k}$. Then the number of different ways in which Ω may be labelled with elements of L up to symmetry under the action of G is enumerated by $Z\left(G, \Omega ; x, x^{(2)}, \ldots, x^{(t)}\right)$.

We construct the cycle index for Ω_{V}, the set of vertices of the regular tetrahedron, and for Ω_{E}, its set of edges. The group acting on these sets will be the rotational symmetries of the tetrahedron, which is the alternating group A_{4}. As an abstract group, A_{4} may be defined as multiplication of the twelve even permutations of $\{1, \ldots, 4\}$: (1)(2)(3)(4), (1 2)(3 4), (13)(2 4), (1 4)(2 3), (12 3)(4), (1 32$)(4),(124)(3),(142)(3),(134)(2),(143)(2),(1)(234),(1)(243)$,
('even' by virtue of their numbers of disjoint cycles having the same parity as the permuted set, given that 1 -cycles are listed, as above). If the vertices are labelled $1, \ldots, 4$, as above left, then our even permutations directly represent the rotational symmetries of the tetrahedron: for example, (12)(34) is a half-rotation about an axis through the midpoints of edges a and d. The cycle index encodes these symmetries in terms of their cycle lengths: s_{i} records cycles of length i, hence s_{1}^{4} records a permutation of four 1 -cycles (i.e. (1)(2)(3)(4)); $3 s_{2}^{2}$ records three pairs of 2 -cycles; $8 s_{1} s_{3}$ records eight permutations with a 1 -cycle and a 3-cycle. And finally $Z\left(A_{4}, \Omega_{V} ; s_{1}, s_{2}, s_{3}\right)$ averages these over the whole group to give $\frac{1}{1^{2}}\left(s_{1}^{4}+3 s_{2}^{2}+8 s_{1} s_{3}\right)$. Now we may enumerate, say, in how many ways the vertices may be coloured red, r, and blue, b, up to symmetry: $Z\left(A_{4}, \Omega_{V} ; r+b, r^{2}+b^{2}, r^{3}+b^{3}\right)=b^{4}+b^{3} r+b^{2} r^{2}+b r^{3}+r^{4}$. The coefficient of $b^{i} r^{j}$ counts colourings with i blue vertices and j red ones: we see that the colouring of the tetrahedron above centre is unique, up to symmetry. When the tetrahedral symmetries act on edges instead of vertices the group is still A_{4} but the disjoint cycle structures have changed and this is reflected in a different cycle index (see above left again; this time 1-cycles are omitted for conciseness):
$1,(a d)(b e),(a d)(c f),(b e)(c f),(a b c)(d e f),(a b f)(c d e),(a c b)(d f e),(a c e)(b d f),(a e c)(b f d),(a f b)(c e d),(a f e)(b d c) \rightarrow \frac{1}{12}\left(s_{1}^{6}+3 s_{1}^{2} s_{2}^{2}+8 s_{3}^{2}\right)$. This time the calculation reveals that the half-red-half-blue colouring, above right, is one of four possibilities up to symmetry.

The 1937 rediscovery by George Pólya of this neglected 1927 result of J. Howard Redfield turned it into a classic of combinatorics.
Web link: crypto.stanford.edu/pbc/notes/; the Redfield story: match.pmf.kg.ac.rs/content46.htm, the article by E. Keith Lloyd.

Further reading: Combinatorics: Ancient and Modern by Robin J. Wilson and John J. Watkins, OUP, 2013, Chapter 12.

