THEOREM OF THE DAY

Tutte's Golden Identity Let T be an n-vertex planar triangulation with chromatic polynomial $P(T, \lambda)$,
and let φ denote $\frac{1}{2}(1+\sqrt{5})$, the golden ratio. Then

$$
P(T, \varphi+2)=(\varphi+2) \varphi^{3 n-10}(P(T, \varphi+1))^{2}
$$

A planar triangulation T is a graph embedded in the plane in such a way that every face is a triangle. Then $P(T, \lambda)$ is the wonderful polynomial whose value at any positive integer value of λ is the number of ways to use λ colours to properly colour the vertices of T, that is, with no adjacent vertices having the same colour. A 'random’ 10 -vertex planar triangulation T is shown on the right; its chromatic polynomial is $P(T, \lambda)=$ $\lambda(\lambda-1)(\lambda-2)(\lambda-3)\left(\lambda^{6}-18 \lambda^{5}+141 \lambda^{4}-617 \lambda^{3}+1588 \lambda^{2}-2265 \lambda+1385\right)$, shown in the background, plotted between $\lambda=2$ and $\lambda=3.7$. It has zeros at 2 and 3 (circled) since no proper colouring is possible with fewer than 4 colours. A further zero occurs at almost exactly $\varphi+1 \approx 2.618$; small values of P in this vicinity are guaranteed by a striking Golden Inequality for planar triangulations:

$$
0<|P(T, \varphi+1)| \leq \varphi^{5-n}
$$

(the right-hand side is about 0.09 for $n=10$ and our graph has $P(T, \varphi+1) \approx 0.007$). The right-most circled point on our plot shows the value, $25-10 \sqrt{5}$, of $P(T, \lambda)$ at $\lambda=\varphi+2$. Meanwhile, $(\varphi+2) \varphi^{3 n-10}$ evaluates to $27365+12238 \sqrt{5}$ and $(P(T, \varphi+1))^{2}$ evaluates to $259205-115920 \sqrt{5}$, and indeed and remarkably the product of these two numbers is $25-10 \sqrt{5}$.
The triangulation property is essential: if we, say, insert a vertex into the edge from vertex 1 to vertex 2 then the two incident triangular faces become squares, and the identity is found to fail.
A consequence of the identity, combined with the Golden Inequality, is that $P(T, \varphi+2)>0$. This was of interest in view of the proximity of $\varphi+2$ to 4 : the Four Colour Theorem, eventually proved by other methods, asserts that $P(T, 4)>0$ for all planar triangulations.

Chromatic polynomials were introduced into the study of 4 -colourings in 1912 by George David Birkhoff. They were excessively laborious to compute before the advent of computers; catalogues were compiled in the 60s by Ruth Bari and by Dick Wick Hall and this led Bill Tutte and Gerald Berman to spot a link to the golden ratio, subsequently formalised by Tutte in the above theorems.

Weblink: www.maths.nottingham.ac.uk/personal/drw/PG/cp.hndt.pdf.
Further reading: Graph Theory As I Have Known It by William T. Tutte, OUP, 1998, Chapter 11. The above quote is

