## THEOREM OF THE DAY

**Tutte's Golden Identity** Let T be an n-vertex planar triangulation with chromatic polynomial  $P(T, \lambda)$ ,

and let  $\varphi$  denote  $\frac{1}{2}(1+\sqrt{5})$ , the golden ratio. Then

 $P(T, \varphi + 2) = (\varphi + 2)\varphi^{3n-10}(P(T, \varphi + 1))^2.$ 

A planar triangulation T is a graph embedded in the plane in such a way that every face is a triangle. Then  $P(T, \lambda)$  is the wonderful polynomial whose value at any positive integer value of  $\lambda$  is the number of ways to use  $\lambda$  colours to properly colour the vertices of T, that is, with no adjacent vertices having the same colour. A 'random' 10-vertex planar triangulation T is shown on the right; its chromatic polynomial is  $P(T, \lambda) =$  $\lambda (\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda^6 - 18\lambda^5 + 141\lambda^4 - 617\lambda^3 + 1588\lambda^2 - 2265\lambda + 1385),$ shown in the background, plotted between  $\lambda = 2$  and  $\lambda = 3.7$ . It has zeros at 2 and 3 (circled) since no proper colouring is possible with fewer than 4 colours. A further zero occurs at almost exactly  $\varphi + 1 \approx 2.618$ ; small values of P in this vicinity are guaranteed by a striking Golden Inequality for planar triangulations:

$$0<|P(T,\varphi+1)|\leq \varphi^{5-n},$$

(the right-hand side is about 0.09 for n = 10 and our graph has  $P(T, \varphi + 1) \approx 0.007$ ).

The right-most circled point on our plot shows the value,  $25 - 10\sqrt{5}$ , of  $P(T, \lambda)$  at  $\lambda = \varphi + 2$ . Meanwhile,  $(\varphi + 2)\varphi^{3n-10}$  evaluates to 27365 + 12238  $\sqrt{5}$  and  $(P(T, \varphi + 1))^2$ evaluates to  $259205 - 115920\sqrt{5}$ , and indeed and remarkably the product of these

two numbers is  $25 - 10\sqrt{5}$ .

The triangulation property is essential: if we, say, insert a vertex into the edge from vertex 1 to vertex 2 then the two incident triangular faces become squares, and the identity is found to fail.

A consequence of the identity, combined with the Golden Inequality, is that  $P(T, \varphi + 2) > 0$ . This was of interest in view of the proximity of  $\varphi + 2$  to 4: the Four Colour Theorem, eventually proved by other

methods, asserts that P(T, 4) > 0 for all planar triangulations.



Chromatic polynomials were introduced into the study of 4-colourings in 1912 by George David Birkhoff. They were excessively laborious to compute before the advent of computers; catalogues were compiled in the 60s by Ruth Bari and by Dick Wick Hall and this led Bill Tutte and Gerald Berman to spot a link to the golden ratio, subsequently formalised by Tutte in the above theorems.



Further reading: Graph Theory As I Have Known It by William T. Tutte, OUP, 1998, Chapter 11. The above quote is on p. 134).

