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This paper explores aesthetics of mathematical proof. Certain im-
portant aspects of proofs are not relevant to aesthetics (validity, utility,
exposition) but others are (immediacy, enlightenment, economy of means,
establishment of connections, opening of mathematical vistas). Three dif-
ferent proofs of the binomial theorem are used as illustrations.

1 Introduction

Proof in mathematics has two central roles: it provides the definitive criterion for
truth in the subject (an epistemological role) and it is the canvas for part of the
aesthetic of mathematics.

In order to meet the demands of the epistemological role, a proof must follow
the rules of deductive logic. Each statement in the proof must either be an axiom
or definition or be known to be correct from a previous proof, or it must follow
from earlier statements in the proof. Proofs are usually informal in that they do
not fill in all of the steps, but rather depend on the mathematical knowledge of the
reader to provide, if desired, all of the connections. Thus a proof depends on an
intellectual tradition and a social context for satisfaction of its epistemological role.
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That context will provide for an agreed upon notion of number, specification of the
logical constructs allowed in the proof (usually classical predicate calculus, unless an
explicit constructivist or intuitionist viewpoint is taken), notational conventions, and
familiarity with other theorems which may be brought to bear. In particular, there
is a need for knowledge of the proofs of those other results, so that hidden circularity
is avoided.

But satisfaction with and appreciation of a proof does not end with determination
of its validity. We ask for insight. A proof should not only tell us that a mathematical
statement is true, but why it is true. We will find a proof more pleasing if it is elegant
and efficient. A proof which shows how disparate parts of mathematics combine to
give new results will be more satisfying than a proof which shows a result in a narrow
context. Proofs illustrating the power of major theorems can either delight (“Wow,
that was slick!”) or disappoint (“Shooting a fly with a cannon”) depending on whether
the result seemed deserving of the tool. Some proofs provoke awe by their immediacy
(Bhaskara’s one word proof of the Pythagorean Theorem) and others by the element of
surprise in how their pieces fit together (Euclid’s proof of the Pythagorean Theorem).

In this paper I propose to consider several proofs of the the Binomial Theorem to
see how aesthetic criteria can be applied to mathematical proofs. Since historically
several slightly different related results have gone under that name, it is wise to specify
exactly what we are proving.

Theorem 1.1 (Binomial Theorem) For any natural number n and any numbers
x and a,

(x + a)n =
n∑

k=0

(
n
k

)
an−kxk.

In order to make sense of the theorem we need to agree on some conventions.
First, we define the binomial coefficients(

n
k

)
=

n!

k!(n− k)!

using the convention that 0! = 1 to cover the cases where either n, n− k, or k is 0.
We will also stipulate that x0 = 1 and a0 = 1. These are questionable if x = 0 or

a = 0, so those should be dealt with as separate cases. Interpretation of the theorem
in those cases gives either an = an or xn = xn. If all of n = 0, x = 0, and a = 0 then
we get the result 00 = 00, which isn’t particularly meaningful, but as long as we agree
on what we mean by 00 we are forced to accept the result.
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2 Three Proofs

The binomial theorem can be thought of as a solution for the problem of finding an
expression for (x + a)n from one for (x + a)n−1 or as a way to find the coefficients of
(x + a)n directly. Solutions using what we call Pascal’s triangle have a long history:
Struik [8], p.21 gives references to books written in 1261 by Yang Hui and 1425 by
Al-Kashi; Klein [4], p.272 notes that the result was known to thirteenth century Arabs
and appears in a text by Stifel in 1544. Newton generalized the theorem to fractional
and negative exponents in two letters to Henry Oldenberg in 1676, though he gave
no proof.

2.1 Induction Proof

Many textbooks in algebra give the binomial theorem as an exercise in the use of
mathematical induction. This can be thought of as a formalization of the technique
for getting an expression for (1 + a)n from one for (1 + a)n−1. The key calculation is
in the following lemma, which forms the basis for Pascal’s triangle.

Lemma 2.1 For all 1 ≤ k ≤ m(
m
k

)
+

(
m

k − 1

)
=

(
m + 1

k

)
Proof:

This is a direct calculation in which we add fractions and simplify:(
m
k

)
+

(
m

k − 1

)
=

m!

(m− k)!k!
+

m!

(m− k + 1)!(k − 1)!

=
m!(m− k + 1)!(k − 1)! + m!(m− k)!k!

(m− k)!k!(m− k + 1)!(k − 1)!

=
m!(k − 1)!(m− k)!(k + (m− k + 1))

(m− k)!k!(m− k + 1)!(k − 1)!

=
m!(k + (m− k + 1))

k!(m− k + 1)!

=
m!(m + 1)

k!(m− k + 1)!

=
(m + 1)!

k!(m− k + 1)!
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=

(
m + 1

k

)

With this Lemma we can give a fairly quick induction proof.
Proof:

We proceed by mathematical induction:
For the case n = 0 the theorem says

(x + a)0 =
0∑

k=0

(
0
k

)
a0−kxk.

Now (x + a)0 = 1 and

0∑
k=0

(
0
k

)
a0−kxk =

(
0
0

)
a0x0 = 1.

Here we are using the conventions that(
0
0

)
= 1

and that any number to the 0 power is 1. Given the artificiality of these
assumptions, we may be happier if the base case for n = 1 is also given.

For the case n = 1 the theorem says

(x + a)1 =
1∑

k=0

(
1
k

)
a1−kxk =

(
1
0

)
a1x0 +

(
1
1

)
a0x1.

This is equivalent to

(x + a) =
1!

1!0!
a +

1!

0!1!
x = a + x

which is true. Thus we have the base cases for our induction.
For the induction step we assume that

(x + a)m =
m∑

k=0

(
m
k

)
am−kxk
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and show that

(x + a)m+1 =
m+1∑
k=0

(
m + 1

k

)
am+1−kxk.

This is a calculation using the Lemma

(x + a)m+1 = (x + a)m(x + a) =

(
m∑

k=0

(
m
k

)
am−kxk

)
(x + a)

=
m∑

k=0

(
m
k

)
am−kxk+1 +

m∑
k=0

(
m
k

)
am−k+1xk

=

(
m
0

)
am+1x0+

m∑
k=1

((
m
k

)
+

(
m

k − 1

))
am−k+1xk+

(
m + 1
m + 1

)
a0xm+1

=
m+1∑
k=0

(
m + 1

k

)
am+1−kxk

Completing the proof by induction.

2.2 Combinatorial Proof

The combinatorial proof of the binomial theorem originates in Jacob Bernoulli’s Ars
Conjectandi published posthumously in 1713. See [2] p.383. It appears in many
discrete mathematics texts.
Proof:

We start by giving meaning to the binomial coefficient(
n
k

)
=

n!

k!(n− k)!

as counting the number of unordered k-subsets of an n element set. This
is done by first counting the ordered k-element strings with no repetitions:
for the first element we have n choices; for the second, n− 1; until we get
to the kth which has n − k + 1 choices. Since these choices are made in
succession, we multiply to get

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
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such ordered k-tuples without repetition. Each k-element subset can be
ordered in k! different ways, so the count of ordered k-tuples is exactly k!
times too big for counting subsets. Thus the number of k element subsets
of an n element set is

n!

k!(n− k)!
=

(
n
k

)
.

Next we observe that the process of multiplying out (x + a)n involves
adding up 2n terms each obtained by making a choice for each factor to
use either the x or the a. The choices which result in k x’s and n− k a’s

each give a term of the form an−kxk. There are

(
n
k

)
distinct ways to

choose the k element subset of factors from which to take the x. Thus the

coefficient of an−kxk is

(
n
k

)
. This tells us that

(x + a)n =
n∑

k=0

(
n
k

)
an−kxk

as desired.

2.3 Derivation using Calculus

Newton’s generalization of the binomial theorem gives rise to an infinite series. Care-
ful consideration of differentiation inside the radius of convergence and uniqueness
considerations from differential equations allow a proof (sketched, for instance, in
Sallas-Hille [7], p. 679–curiously, most standard calculus books give this series at
about page 670). If we restrict to natural number exponents, the convergence con-
siderations are not necessary and a proof based on the differentiation of polynomials
becomes possible. One needs to be careful not to use the binomial theorem in proving
the power rule if one wants to use this proof or one will introduce a circularity.
Proof:

We first note that since (x−a) is a polynomial of degree 1, (x+a)n will
be a polynomial of degree n and will thus be determined once we know
what the coefficients of each of the n + 1 possible powers of x are. For
concreteness let us write

(x + a)n = p(x) =
n∑

k=0

bkx
k
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and show how to determine the coefficients bk.
Using the power rule and the chain rule for differentiation we observe

that
d

dx
(x + a)n = n(x + a)n−1

so that

(x− a)
d

dx
(x + a)n = n(x + a)n

with (0 + a)n = an. This gives a first order differential equation satisfied
by p(x) = (x + a)n, namely

(x + a)p′(x) = np(x)

with initial condition
p(0) = an.

We then determine what the coefficients bk must be to satisfy this
equation. The initial condition p(0) = an tells us that b0 = an. We can
relate later coefficients to earlier ones using the differential equation:

p′(x) =
n∑

k=1

kbkx
k−1

so

(x + a)p′(x) =
n∑

k=1

kbkx
k +

n∑
k=1

akbkx
k−1

= ab1 +
n−1∑
k=1

(kbk + a(k + 1)bk+1)x
k + nbnx

n

=
n∑

k=0

nbkx
k

Since polynomials are equal when their coefficients are equal, this tells us
that

a b1 = nb0

(1 b1) + (a 2 b2) = n b1

...
...

(kbk) + (a(k + 1)bk+1) = n bk

n bn = n bn
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Thus for k = 1, . . . , n− 1 we get

bk+1 =
n− k

(k + 1)a
bk.

Using the fact that b0 = an this gives us

b0 = an

b1 = nan−1

b2 =
n(n− 1)

2
an−2 =

(
n
2

)
an−2

b3 =
n(n− 1)(n− 2)

3 · 2
an−3 =

(
n
3

)
an−3

...
...

bk =
n(n− 1) · · · (n− k + 1)

k!
an−k =

(
n
k

)
an−k

which proves the theorem.

3 Aesthetic principles in mathematical proof

What is it that makes a mathematical proof beautiful? While several authors have
discussed beauty in mathematics, most of mainstream philosophy of mathematics
deals with issues of ontology and epistemology rather than aesthetics. Philosophers
are much more concerned with the nature of mathematical reality and the status
of mathematical truths. The cumulative nature of mathematical truth (we don’t
revise the truth of previous results because rigorous proofs lead to a level of certainty
not found in other disciplines) and the abstraction of mathematical objects make
mathematics a special case in philosophical investigation. Mathematical theorems do
not cease to be true, nor do proofs cease to be valid; they do, however, differ in their
perceived significance over time. There are clearly fashions in style in mathematical
proof and there are judgments made about what mathematics is interesting and thus
worth the effort to understand and polish.

Davis and Hersh [3] give a chapter to aesthetic considerations – a short one, mostly
noting the antiquity of the recognition of beauty in mathematics (quoting Aristotle)
and the paucity of explanations of what that beauty consists of. They say
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Aesthetic judgment exists in mathematics, is of importance, can be
cultivated, can be passed from generation to generation, from teacher to
student, from author to reader. But there is very little formal description
of what it is and how it operates. . . .

Attempts have been made to analyze mathematical aesthetics into
components–alternation of tension and relief, realization of expectations,
surprise upon perception of unexpected relationships and unities, sensuous
visual pleasure, pleasure at the juxtaposition of freedom and constraint,
and , of course, into the elements familiar from the arts, harmony, balance,
contrast, etc. . . . [3, p. 169]

Tymoczko’s paper [9] noting that aesthetics as well as applications to science can
provide a justification for mathematics, cites a need for criticism in mathematics.
His discussion includes consideration of proof as both an art of composition and an
art of performance, allowing for the refinement of proofs using earlier expositions as
templates. Criticism has a role in teaching: “It can give rise to what critics in other
arts call ‘the canon’: the body of lived proofs, the presentations still going on, that we
want to teach to our students so that they can become gifted listeners of mathematics,
sensitive critics able to judge new works as they appear.”(p.73)

Borel’s address [1] compares mathematics and painting. Both involve taking in-
spiration from either the real world (in mathematics, from applications and problems
arising in applications; in art, from the subject of the painting) and an important
role for abstraction. Edward Rothstein’s Emblems of the Mind [6] gives an extended
study of the similarities between music and mathematics, with concern for all of
composition, technique, and aesthetics.

Gian-Carlo Rota [5] in his essay The Phenomenology of Mathematical Beauty
stresses the variety of aspects of mathematics which can be considered beautiful (the-
orems, proofs, definitions, axiom systems) and notes that they need not go together:
a beautiful theorem can have an ugly proof. He also notes the essential context sensi-
tivity of judgments of mathematical beauty. By the end of the essay Rota concludes
that discussion of beauty is a cop out and what mathematicians actually want is
enlightenment:

Mathematicians seldom explicitly acknowledge the phenomenon of en-
lightenment for at least two reasons. First, unlike truth, enlightenment
is not easily formalized. Second, enlightenment admits degrees: some
statements are more enlightening than others. Mathematicians dislike
concepts admitting degrees, and will go to any length to deny the logical

9



role of any such concept. Mathematical beauty is the expression mathe-
maticians have invented in order to obliquely admit the phenomenon of
enlightenment while avoiding acknowledgement of the fuzziness of this
phenomenon. They say that a theorem is beautiful when they mean to
say that it is enlightening.[5, p.132]

We can note first things which are not involved because they either relate to other
mathematical issues or to results rather than proofs:

1. A proof must be logically correct to be a proof, so the truth of the result is a
presupposition and is not relevant to the judgment of beauty.

2. Utility is not relevant since it is most often the result itself and not the proof
that has utility.

3. For most proofs the beauty is not visual, but abstract.

4. While exposition matters, the beauty of a proof does not lie in the felicity of the
wording. A poorly written beautiful proof can be rewritten to make the beauty
more apparent, but an ugly proof will not be made beautiful through polished
or poetic exposition. Rota [5, p.128] notes the distinction between elegance and
beauty and notes that a beautiful proof can be presented both elegantly and
inelegantly.

There are general criteria that we can use to judge the beauty of a proof. My
object here is to discuss measures of beauty internal to mathematics, hence omitting
many of the issues mentioned by Davis and Hersh as being more general aesthetic
criteria:

1. A beautiful proof should make the result it proves immediately apparent.

2. It should explain (at least one aspect of) why the result not only is true but
should be true.

3. It should be economical, using no more than is necessary for the result.

4. A beautiful proof often makes unexpected connections between seemingly dis-
parate parts of mathematics.

5. A proof which suggests further development in the subject will be more pleasing
than one which closes off the subject.
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As with all aesthetic judgments, there is room for both cultural and individual varia-
tion in assessing the importance of different factors. What suggests further develop-
ments at one stage of the development of mathematics may not at another. What one
mathematician perceives as disparate parts of mathematics may be so closely linked
in another’s mind that the surprise factor is absent.

Let us next attempt to apply these criteria to the proofs of the binomial theorem
given earlier:

A beautiful proof should make the result it proves immediately appar-
ent. What argument best makes a result immediately apparent depends a bit on
the preparation of the beholder. A proof which is not understood will not produce
the aha! reaction. Of the proofs given for the binomial theorem the induction proof
and the proof using calculus extract the binomial theorem through calculations rather
than giving a direct meaning to the coefficients. The combinatorial proof is somewhat
more immediate, giving a single conceptual reason why the theorem is true. In gen-
eral conceptual proofs are preferred to computational proofs, unless the computation
involved is particularly elegant. (For instance the proof of Taylor’s theorem which
uses integration by parts to produce a telescoping series in which all but two terms
vanish on rearrangement, while essentially computational, is elegant and provides the
immediacy asked for in this criterion.)

It should explain why the result not only is true but should be true. Here
the different proofs provide different aspects of why the binomial theorem should be
true. The induction proof and the calculus proof show how the binomial theorem
follows from well established machinery(calculation and differentiation). The counting
argument uses a conceptual approach.

The inductive proof builds on the recursive nature of the definition of powers and
shows how explicit calculation can tell how to get from one case to the next. Students
at an early (concrete) stage of mathematical maturity find the calculation approach
appealing, though induction is often difficult for them to grasp. Deep understanding
of how induction and recursion are intertwined is needed for the induction proof to give
the should be true reaction. For most mathematicians and students of mathematics
induction proofs give little enlightenment and may be judged to be rather ugly because
of that failure.

The other two proofs fare better on this criterion. The proof using calculus uses the
central notion that knowing a first order differential equation and an initial condition
should be enough to specify a differentiable function. In the details of how the
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binomial coefficients follow from differentiation we gain insight into why the coefficient
has the specified form. The counting argument also gives a clear reason why the
binomial theorem should be true.

It should be economical, using no more than is necessary for the result.
Of the three proofs, only the calculus proof looks like overkill. It uses much more
machinery than the other two proofs. For economy it is hard to beat the induction
proof. The calculation uses nothing more than basic algebra as does the induction
step. The combinatorial proof also has an economy of means with only a minor side
excursion into counting permutations..

A beautiful proof often makes unexpected connections between seemingly
disparate parts of mathematics. Here the proof using calculus points out con-
nections more distant than those suggested by either of the other two proofs. The
induction proof stays firmly in one part of mathematics, suggesting few connections
for the result. The combinatorial proof does make connections to counting technique,
but the perceived distance between algebraic manipulation and counting is not large
enough for the connection to be particularly surprising.

There is some conflict between the desire for a proof to have economy in means
and to make connections with other parts of mathematics. Such unexpected con-
nections may seem like side issues and diversions if other shorter more direct proofs
are available. However, links to more distant parts of mathematics open up further
development in a way that more self contained proofs do not.

A proof which suggests further development in the subject will be more
pleasing than one which closes off the subject. A strong case can be made
here for all three of the proofs.

The induction proof suggests the utility of recurrences. It also gives one of the
most basic examples of an essential proof technique. As such it opens vistas on many
parts of mathematics. The induction proof, however, gives little indication how to find
new results about binomial coefficients, or how to generalize the binomial theorem to
multinomials or fractional exponents. While the induction proof gives little guidance
in how to develop generalizations in algebra, it does provide an important example
of a key technique with wide application in mathematics.

The combinatorial proof suggests that algebraic identities can be proved by looking
at the meaning of what counting methods they represent. A small cottage industry
arises in combinatorics using similar ideas to prove identities using the binomial coef-
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ficients. Turning the problem in another direction this proof shows how polynomials
can be thought of as generating functions for counting problems. It is then a short
and productive step to more general kinds of generating functions.

Within the calculus proof there is another idea which proves useful in combina-
torics: thinking of (x+a)n as a function of x rather than as a formal expression in the
symbols x and a. This opens the way for application of analytic techniques, useful for
proving further identities by differentiation or integration. The calculus based proof
I’ve given also illustrates how differential equations can be used to obtain coefficients
in a Taylor series expansion for a solution.

In a sense the calculus proof of the binomial theorem is cheating on this criterion,
since what I have given is the simplest case of the binomial series developed by
Newton. Thus rather than having this proof suggest further developments to us, we
have obtained the proof by specializing the further developments it leads to. In fact
Newton gave the binomial series by generalizing from the form given by the binomial
theorem and did not give a proof of the result.
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