THEOREM OF THE DAY

A Theorem on Apollonian Circle Packings For every integral Apollonian circle packing there is a unique 'minimal' quadruple of integer curvatures, (a, b, c, d), satisfying $a \leq 0 \leq b \leq c \leq d, a+b+c+d>0$ and $a+b+c \geq d$. This so-called root quadruple completely specifies the packing.

$(-7,12,17,20)$
A Descartes configuration consists of four mutually tangent circles. Above, for example, is a circle of radius $1 / 7$ containing circles of radius $1 / 12,1 / 17$ and $1 / 20$, each of which has a point of contact with the other three. The integers labelling the circles are the curvatures (the reciprocals of the radii) and in the root quadruple of curvatures, $(-7,12,17,20)$, the enclosing circle of radius $1 / 7$ is determined to have negative curvature so that all four circles have disjoint interiors. Any such configuration specifies four more tangent circles - above, these have curvatures 24,33 , 48 , and 105 , producing four new configurations $(-7,12,17,24),(-7,12,20,33),(-7,17,20,48)$ and $(12,17,20,105)$. Repeating this process produces a system of infinitely packed circles: an Apollonian circle packing. If our initial configuration is integral, as in the above example, then we will get an integral packing with every curvature an integer.
This theorem comes from a series of four pivotal papers by the AT\&T team of Ronald Graham, Jeffrey Lagarias, Colin Mallows and Allan Wilks, together with Catherine Yan of Texas A\&M University. They further show that all integral Apollonian circle packings may be derived from root quadruples which, like that depicted above, have entries whose gcd is 1 .
Web link: www.vector. org. uk/archive/v224/cliff224.htm shows how to create Apollonian packings and links to the papers of Graham et al.
Further reading: Introduction to Circle Packing: The Theory of Discrete Analytic Functions, by Kenneth Stephenson, CUP, 2005.

