THEOREM OF THE DAY

Minkowski's Convex Body Theorem Let $L(B)=\left\{B x \mid x \in \mathbb{Z}^{n}\right\}$ be the integer lattice whose points are all integer-weighted sums of the n linearly independent basis vectors forming B, an $n \times n$ matrix over \mathbb{R}. Let S be a convex subset of \mathbb{R}^{n}, closed under negation, whose volume exceeds $2^{n}|\operatorname{det}(B)|$. Then S contains a nonzero point of $L(B)$.

The lattice on the left consists of all points (x, y) where x and y are integers summing to an even number; it is defined by the two column vectors $(1,1)$ and $(2,0)$. The shaded parallelogram defined by these two basis vectors is called the fundamental parallelepiped, denoted $P(B)$, and its volume (which, in two dimensions is just area) is synonymous with $|\operatorname{det}(B)|$, the (absolute value of the) determinant of the basis matrix. For our vectors this volume is given as 2 units 2. The set S, depicted as a curved region, fails to be convex because some straight lines joining pairs of points in S pass outside of S : technically, for some $x_{1}, x_{2} \in S$ not every sum $t x_{1}+(1-t) x_{2}$, for

$0 \leq t \leq 1$, is a point of S. It also fails to be closed under negation: $x \in S$ does not guarantee $-x \in S$. And the volume of $S(\approx 2.8)$ fails to exceed $2^{2} \times \operatorname{det}(B)=8$. So Minkowski's Theorem does not apply to S; and indeed, if S were translated right or left it might fail to contain a non-zero lattice point. However, we can apply:
Blichfeldt's Theorem If S is any measurable set whose volume exceeds $|\operatorname{det}(B)|$ then there exist distinct points x_{1} and x_{2} in S such that $x_{1}-x_{2}$ is a lattice point in $L(B)$.
 To prove this, observe that sufficient copies of the fundamental parallelepiped $P(B)$, moved to lattice points as shown above right, will cover the set S. If their intersections with S are translated to the origin (see left) then two must overlap, because $\operatorname{vol}(S)>|\operatorname{det}(B)|=\operatorname{vol}(P(B)$. So some point z lies in the two distinct copies of $P(B)$ translated from, say, lattice points z_{1} and z_{2} (see right). Then $x_{1}=z+z_{1}$ and $x_{2}=z+z_{2}$ lie in S and $x_{1}-x_{2}=$ $z+z_{1}-\left(z+z_{2}\right)$, being a difference of lattice points, is itself a lattice point.
Minkowski's Theorem can now be proved as a corollary: let $\hat{S}=\frac{1}{2} S$ (halving in each of the n dimensions). Then $\operatorname{vol}(\hat{S})=2^{-n} \operatorname{vol}(S)>|\operatorname{det}(B)|$, so Blichfeldt supplies $x_{1}, x_{2} \in \hat{S}$ with $x_{1}-x_{2} \in L(B)$. Then, by definition of \hat{S}, closure under negation, and convexity, $2 x_{1}, 2 x_{2},-2 x_{2}$, and $\frac{1}{2}\left(2 x_{1}\right)+\left(1-\frac{1}{2}\right)\left(-2 x_{2}\right)$ are all in S, and the last of these, being equal to $x_{1}-x_{2}$, is a nonzero lattice point.
Hermann Minkowski's 1889 theorem is the foundation of his 'geometry of numbers'. Hans Blichfeldt's theorem dates from 1914.
$\longrightarrow \quad \longrightarrow \quad$ Web link: ocw.mit.edu/courses/mathematics, course 18.409: an Algorithmists Toolkit, lectures 18 and 19.
Further reading: Lectures in Discrete Geometry by Jiřì Matoušek, Springer, New York, 2002. Created by Robin Whitty for www.theoremoftheday.org

