Miquel’s Triangle Theorem Let A, B and C be the vertices of a triangle and a, b and c be points chosen on sides CB, AC and AB, respectively. Then the circles defined by bAc, cBa and aCb have a common point of intersection. Moreover, if a, b and c are chosen to be collinear then this point lies on the circle defined by A, B and C.

The above picture (created using David Joyces wonderful Geometry Applet package) shows Miquel’s Theorem in action. Changing the size or shape of triangle ABC, or moving any of the side points a, b or c, will move but not destroy the point of intersection of the three red circles. The magenta triangle abc reduces to a line when its vertices are collinear, as on the right, and at this point we find the red circles intersect in a point on the green circle on ABC.

Auguste Miquel was a French mathematician active in the mid-nineteenth century. The point of intersection of the circles in this theorem is known as the ‘Miquel Point’.

Web link: kskedlaya.org/geometryunbound/, see section 1.2 of “notes from August 1999” (under “Non-GFDL”).