THEOREM OF THE DAY

The Pythagorean Theorem Consider a triangle with angles A, B and C and opposite sides a, b and c, respectively. If $C=\tau / 4$ (a right angle) then $c^{2}=a^{2}+b^{2}$.

B

One of these days I would like to find a convincing explanation of the circumstance that youngsters continue to be educated with the theorem of Pythagoras in its diluted form...

The mercurial Dutch maestro Edsger Dijkstra (1930-2002) discovered that, if $\operatorname{sgn}(x)=-1,0,1$ accordingly as x is negative, zero or positive, then the Pythagorean theorem follows from the elegantly symmetrical and much more general identity

$$
\operatorname{sgn}(A+B-C)=\operatorname{sgn}\left(a^{2}+b^{2}-c^{2}\right)
$$

It is striking that a logical relationship between sides and angles can produce, when one angle is $\tau / 4$ radians (i.e. 90°), a method for calculating one side from the other two.

Sometimes known as 'Pythagoras's Theorem', this is more accurately called 'Pythagorean' since it was almost certainly known before Pythagoras ($569-475$ BC). The Pythagoreans believed that the world could be described by the rational numbers which is ironic since their theorem produces triangles of sides such as $\sqrt{1^{2}+1^{2}}=\sqrt{2}$ which is not a rational number.
Web link: Thony Christie is very informative on the history: thonyc.wordpress.com/2014/04/16/. A pdf facsimile of Dijkstra's original hand-written note on Pythagoras is archived as Document 975 at www.cs.utexas.edu/users/EWD/index09xx.html. The proof given on the left is no. 5 (of over a hundred!) at www.cut-the-knot.org/pythagoras/.
Further reading: The Pythagorean Theorem: a 4000-Year History by Eli Maor, Princeton University Press, 2007.

