THEOREM OF THE DAY

The Shoelace Formula Suppose the n vertices of a simple polygon in the Euclidean plane are listed in counterclockwise order as $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)$. Then the area A of the polygon may be calculated as:

$$
A=\frac{1}{2}\left(x_{0} y_{1}-x_{1} y_{0}+\ldots+x_{n-2} y_{n-1}-x_{n-1} y_{n-2}+x_{n-1} y_{0}-x_{0} y_{n-1}\right)
$$

An Application

We may triangulate a polygon on n vertices by adding $n-3$ diagonals, as illustrated on the right. We would like to test if some straight line joining a triangle vertex to the opposite polygon edge bisects the area of the polygon. In our diagram this requires a value of $t \in[0,1]$ for which the polygons $v_{0},(1-t) v_{0}+t v_{1}, v_{3}, v_{4}$ and $(1-t) v_{0}+t v_{1}, v_{1}, v_{2}, v_{3}$ have equal area.
The Shoelace formula was invented in 1769 by Albrecht Meister, but it is widely attributed to Gauss who made significant discoveries about polygons at the age of 18 in the 1790s. It may now be seen as an application of Green's Theorem (1828). the area of the triangle itself. Then

Using the exterior algebra

- Invariants e_{1}, \ldots, e_{n}, multiplied and added

Example

Because the polygon on the left has lattice point vertices, Pick's theorem gives its area as:

$$
I+B / 2-1=6+6 / 2-1=8
$$

where I (resp. B) is number of interior (resp. boundary) lattice points. We can confirm that the Shoelace formula gives the same value, calculating counterclockwise from the arrow:

$$
\frac{1}{2} \times(2 \times 0-1 \times 5
$$

We apply the Shoelace formula, simplying via $v_{i} \wedge v_{i}=0$ and $v_{i} \wedge v_{j}=-v_{j} \wedge v_{i}$, just as for the which we may solve for t, giving: over a field (e.g. \mathbb{R}) to give 'formal' expressions.

$$
\text { E.g. } E=e_{1} e_{2} e_{3}-3 e_{1} e_{3} e_{2}+\sqrt{2} e_{3}^{3} .
$$

- Expressions multiply using the exterior (wedge) product $E \wedge F$ (omitted for single invariants as in the above example) using the following rule:

$$
e_{i} e_{j}=\left\{\begin{array}{cc}
0 & i=j \\
-e_{j} e_{i} & i \neq j
\end{array}\right.
$$

Thus our example expression above simpli-

$$
+5 \times 4-0 \times 6
$$ fies:

$$
+6 \times 2-4 \times 4
$$

$$
E=e_{1} e_{2} e_{3}+3 e_{1} e_{2} e_{3}+0=4 e_{1} e_{2} e_{3} .
$$

$$
+4 \times 3-2 \times 1
$$

- Encoding $v_{i}=\left(x_{i}, y_{i}\right)$ as $x_{i} e_{1}+y_{i} e_{2}$, we have

$$
+1 \times 1-3 \times 2)=8
$$ invariants e_{i}. We get an equation

$$
v_{i} \wedge v_{j}=\left(x_{i} y_{j}-x_{j} y_{i}\right) e_{1} e_{2}
$$

- Now we can express the Shoelace formula very concisely:

$$
A=\frac{1}{2}\left(v_{0} \wedge v_{1}+\ldots v_{n-1} \wedge v_{0}\right)
$$

(or, more precisely, the coefficient of $e_{1} e_{2}$ in this summation).
$t=\frac{v_{0} v_{1}+v_{1} v_{2}+v_{2} v_{3}+v_{3} v_{0}-\left(v_{0} v_{3}+v_{3} v_{4}+v_{4} v_{0}\right)}{2\left(v_{0} v_{1}+v_{1} v_{3}+v_{3} v_{0}\right)}$, omitting the \wedge s for greater clarity.
And we recognise three applications of the Shoelace formula! Denote by $A_{c l}$ the polygon area clockwise from of our chosen triangle; by $A_{c o}$ the remaining polygon area; and by A_{Δ}

$$
t=\frac{A_{c o}-A_{c l}}{2 A_{\Delta}} .
$$

For our example polygon, again using Pick, $A_{c l}=5 / 2, A_{c o}=8-5 / 2=11 / 2$ and $A_{\Delta}=5 / 2$. This gives $t=(11 / 2-5 / 2) / 5=3 / 5$ (a little to the right of our dotted line).
Web link: www.math.tolaso.com.gr/?p=1451
Further reading: The Shoelace Book by Burkard Polster, AMS, 2006.

