THEOREM OF THE DAY

The McIver–Neumann Half-n Bound

Let Ω be a set of order n, $n \neq 3$, and let G be a permutation group acting on Ω. Then G may be generated by $\lfloor n/2 \rfloor$ elements.

Sift(σ)

while $\sigma \neq 1$ and not done do

i := smallest row no. moved by σ

j := $\sigma(i)$

if M_{ij} not empty then $\sigma := \sigma \times M_{ij}^{-1}$

else $M_{ij} := \sigma$ and done := true

Queue := S

while Queue not empty

σ := first permutation in Queue (thereupon removed)

if Sift(σ) updates M with σ' then

add {$M_{ij} \times \sigma', \sigma' \times M_{ij} \mid 1 \leq i < j \leq n, M_{ij} \neq \text{empty or } (\sigma')^{-1}$} to Queue

The generation of a permutation group from a set of permutations is illuminated by the wonderful algorithm which Charles Sims derived from a 1927 lemma of Otto Schreier. In the illustration above, the algorithm is applied to a set of two permutations. The main work is done by the Sift routine, which first places $(1 2)(3 4)$ into row 1 column 2 cell in the 5×5 table M. The next permutation $\sigma = (1 2 3 5)$ is a candidate for the same cell since $\sigma(1) = 2$; since the cell is occupied by $(1 2)(3 4)$ we calculate $\sigma := \sigma \times M_{12}^{-1} = (1 2 3 5) \times (1 2)(3 4) = (2 4 3 5)$. The new cell M_{24} is now indicated for σ because now $\sigma(2) = 4$. Subsequently, the queue is augmented in the main algorithm by pre- and post-multiplying $(2 4 3 5)$ with each non-identity entry of M. The queue now begins with $(1 2)(3 4) \times (2 4 3 5) = (1 4 5 2)$ which Sift places directly into position M_{14}. Although the queue tends to grow rapidly it must eventually become empty; in the current example the algorithm terminates with table shown above, bottom-right. This table describes the generated group in the following way: the order of the group is the product of the numbers of permutations in each row, in this case $5 \times 4 \times 1 \times 1 \times 1 = 20$ (the group happens to be the Frobenius group of order 20, aka the Galois group of the polynomial $x^5 - 2$ over \mathbb{Q}); membership of the group is tested by running Sift on a candidate permutation σ which will be allocated to an empty table location if and only if it does not belong to the group. **Exercise:** try the algorithm with $\Omega = \{1, \ldots, 8\}$ and $S = \{(1 2), (3 4), (5 6), (7 8)\}$.

It is easy to generate large groups from a very few permutations; $n/2$ permutations may sometimes be necessary as the Exercise above easily shows. But Annabelle McIver and Peter M. Neumann’s 1987 theorem seems to be deep and mysterious: it rests on the Classification of the Finite Simple Groups and suggests no obvious way of finding a generating set meeting its bound.

Web link: www.math.uni-bielefeld.de/~baumeist/wop2017/: click on Vortragsfolien and choose Gareth Tracey.