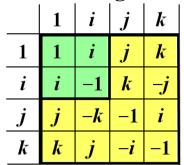
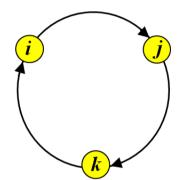
THEOREM OF THE DAY

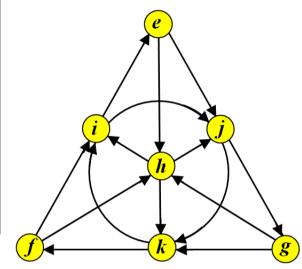
Moufang's Theorem In a Moufang loop any three elements which associate generate a group.





	1	i	j	k	e	f	g	h
1	1	i	j	k	e	f	g	h
i	i	-1	k	-j	f	-е	h	- g
j	j	-k	-1	i	- g	h	e	-f
k	k	j	<i>−i</i>	-1	h	g	- f	-е
e	e	-f	g	- h	-1	i	<i>-j</i>	k
f	f	e	-h	- g	- <i>i</i>	-1	k	j
g	g	-h	-е	f	j	-k	-1	i
h	h	g	f	e	- k	-j	-i	-1

The Octonions



With i the imaginary constant whose square is -1, the set $\{\pm 1, \pm i\}$ forms a group: multiplication keeps you inside the set, it allows inverses (e.g. $i \times -i = -i^2 = -(-1) = 1$, so $i^{-1} = -i$) and it is associative (that is, $x \times (y \times z)$ is the same as $(x \times y) \times z$ — the bracketing can safely be forgotten). In 1843, the great Irish scientist William Rowan Hamilton discovered the quaternions: i is joined by mysterious companions j and k who multiply according to the circular diagram above left: if x and y follow each other clockwise round the circle, then $x \times y = +$ the other quantity; if anticlockwise, the product is negative: ij = k, kj = -i, etc. And, again, $\{\pm 1, \pm i, \pm j, \pm k\}$ is a group. J.T. Graves, a professor of law in London, was inspired to try and go one better: just two months later he had produced the octonions, whose multiplication table is given centre and can be constructed from the Fano plane (above right; to keep the diagram simple, only three points from each circle are given: we must imagine $e \rightarrow j \rightarrow g$, for example, cycling back round to e). But Hamilton spotted a snag: octonion multiplication is not associative. For example, (ij)e = ke = hbut i(je) = i(-g) = -ig = -h. The octonions were discovered independently by Cayley and are sometimes called Cayley numbers.

A hundred years later, in Germany, Ruth Moufang invented a deep connection between algebra and projective geometry via the idea of a loop: exactly those arithmetics which fail to be groups just through being nonassociative. A *Moufang loop* is one in which any x, y and z nearly associate: they obey three (equivalent) *Moufang identities:*

left: $(xy \cdot x)z = x(y \cdot xz)$, middle: $(xy)(zx) = (x \cdot yz)x$, right: $(xy \cdot z)y = x(y \cdot zy)$.

You can check these hold in the octonions which are a classic example of a Moufang loop; the quaternions, hiding associatively inside, are a group thanks to Moufang's theorem. You can check, too, the corollary to Moufang's Theorem, that any Moufang loop is *diassociative*: any *pair* of elements whatsoever generates a group (put y = 1 in the left Moufang identity and apply the theorem to x, x and z). E.g. $\{e, f\}$ generate a group of order 8, with elements $\{\pm 1, \pm i, \pm e, \pm f\}$.

Ruth Moufang (1905–1977) played an indirect part in the classification of the finite simple groups: Richard Parker's 1985 construction of a Moufang loop of order 2^{13} was used by John Conway to construct the Monster (order $\approx 8 \times 10^{53}$).

Web link: Stephen M. Gagola III's paper at www.quasigroups.eu/contents/19.php

Further reading: On Quaternions and Octonions by J.H. Conway and D.A. Smith, AK Peters, 2003.

