THEOREM OF THE DAY

The Orbit Counting Lemma Let G be a finite permutation group on set Ω. For $g \in G$, let fix (g) be the number of points of Ω not moved by g. Then

$$
\text { number of orbits of } G \text { on } \Omega=\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(\mathrm{~g})
$$

Here $\Omega=\{1,2,3,4,5,6,7\}$. Permutations on Ω can be thought of as rearrangements of the contents of a line of 7 boxes, one for each element of Ω. A combination, or product, of two permutations is shown here; the first has fix $((12)(365))=2$, since only the fourth and seventh boxes' contents are unmoved, while fix $((1742))=3$. We get a finite permutation group by starting with a collection of permutations, including the identity which moves no box's contents, and successively producing all possible finite products. The two permutations used here generate a group of 24 different permutations, each of which can either move the contents of boxes 3,5 and 6 or the contents of boxes $1,2,4$ and 7 , but without interchanging between these two subsets, which thereby constitute the two orbits of the group. The summation is as follows:

$$
\frac{1}{24}(7+5+3+3+3+5+3+3+4+2+0+0+0+2+0+0+4+2+0+0+0+2+0+0)=\frac{1}{24}(48)=2 .
$$

The Orbit Counting Lemma is often attributed to William Burnside (1852-1927). His famous 1897 book Theory of Groups of Finite Order perhaps marks its first 'textbook' appearance but the formula dates back to Cauchy in 1845.

Web link: undergraduate.csse.uwa.edu.au/units/CITS7209, see Lecture 3 (0.3MB).
Further reading: Permutation Groups by P.J. Cameron, Cambridge University Press, 1999.

