The Second Isomorphism Theorem

Suppose \(H \) is a subgroup of group \(G \) and \(K \) is a normal subgroup of \(G \). Then \(HK \) is a group having \(K \) as a normal subgroup, \(H \cap K \) is a normal subgroup of \(H \), and there is an isomorphism from \(H/(H \cap K) \) to \(HK/K \) defined by \(h(H \cap K) \leftrightarrow hK \).

To illustrate we take \(G \) to be \(\text{Sym}_5 \), the group of 5! permutations of \(\{1, 2, 3, 4, 5\} \). The Frobenius group \(F_{20} \) may be defined as a subgroup \(H \) of \(G \) generated by a 5-cycle, \(a \), and a 4-cycle, \(b \), satisfying \((ab)^4 = a(ab)(ba)^{-1} = 1\). We take \(K \) to be \(\text{Alt}_5 \), the subset of even permutations: identity, 5-cycles, and products of two 2-cycles. This is normal in \(G \) (i.e. \(g^{-1}Kg = K \) for all \(g \)) because conjugation, \(g^{-1}xg \), is a 1–1 mapping which preserves cycle structure; similarly, \(H \cap K \), the subset of even permutations in \(H \), is a normal subgroup of \(H \).

Now we can uncover the behaviour of the normal subgroup of even permutations of \(F_{20} \). The target quotient, \(HK/K \), is \(\text{Sym}_5/\text{Alt}_5 \cong C_2 \) because (1) any coset of \(K \), say, \(hK \), is either all of \(K \) (if \(h \) is even) or all odd permutations in \(\text{Sym}_5 \) (if \(h \) is odd), and (2) multiplication of cosets mirrors addition modulo 2: \(hK.h'K = hh'K \) switches coset if and only if \(h \) and \(h' \) have different parity. So cosets of \(H \cap K \) must behave in exactly the same way in \(H \). And we can see this in the Cayley graph: \(H \cap K \) is the ‘identity’ coset consisting of all vertices \((m, n)\), \(m \) even; there is one other coset, \(b(H \cap K) \), and left multiplication by \(b \) cycles between the two.

Web link: people.reed.edu/~jerry/332/09isom.pdf
Further reading: Classic Algebra by P.M. Cohn, John Wiley & Sons, 2000, Chapter 9.

This theorem, due in its most general form to Emmy Noether in 1927, is an easy corollary of the first isomorphism theorem. Thus, if \(f : H \to HK/K \) is the surjective homomorphism \(h \mapsto hK \) then and \(H/\ker f \cong \text{im} f \) and \(\ker f = H \cap K \). It is sometimes called the ‘parallelogram rule’ in reference to the diagram on the right.

Created by Robin Whitty for www.theoremoftheday.org