Characters and the MacWilliams identities

Jay A. Wood

Department of Mathematics
Western Michigan University
http://homepages.wmich.edu/~jwood/

Algebra for Secure and Reliable Communications Modeling Morelia, Michoacán, Mexico

October 8, 2012

Characters

- Let G be a finite abelian group (usually additive).
- A character of G is a group homomorphism $\pi: G \rightarrow \mathbb{C}^{\times}$, where \mathbb{C}^{\times}is the multiplicative group of nonzero complex numbers.
- Example. Let $G=\mathbb{Z} / m \mathbb{Z}$ and let $a \in \mathbb{Z} / m \mathbb{Z}$. Then $\pi_{a}: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{C}^{\times}, \pi_{a}(g)=\exp (2 \pi i a g / m)$ is a character. Every character of $\mathbb{Z} / m \mathbb{Z}$ is of this form.

Character group

- Let \widehat{G} be the set of all characters of G.
- Then \widehat{G} is itself a finite abelian group under pointwise multiplication of characters. That is, $\left(\pi_{1} \pi_{2}\right)(g):=\pi_{1}(g) \pi_{2}(g)$ for $g \in G$.
- \widehat{G} is the character group of G.
- $|\widehat{G}|=|G|$; in fact, $\widehat{G} \cong G$ (but not naturally).
- $\widehat{\hat{G}} \cong G$, naturally: $g \mapsto[\pi \mapsto \pi(g)]$.

Products

- If G_{1} and G_{2} are two finite abelian groups, then $\left(G_{1} \times G_{2}\right)^{\wedge} \cong \widehat{G_{1}} \times \widehat{G_{2}}$.
- $\left(\pi_{1}, \pi_{2}\right)\left(g_{1}, g_{2}\right):=\pi_{1}\left(g_{1}\right) \pi_{2}\left(g_{2}\right)$.

Vanishing formulas

- The character sending every $g \in G$ to $1 \in \mathbb{C}^{\times}$is written 1 , the principal character.

$$
\begin{aligned}
& \sum_{g \in G} \pi(g)= \begin{cases}|G|, & \pi=1, \\
0, & \pi \neq 1 .\end{cases} \\
& \sum_{\pi \in \widehat{G}} \pi(g)= \begin{cases}|G|, & g=0, \\
0, & g \neq 0 .\end{cases}
\end{aligned}
$$

Linear independence of characters

- Let $F(G, \mathbb{C})=\{f: G \rightarrow \mathbb{C}\}$ be the set of all functions from G to \mathbb{C}.
- $F(G, \mathbb{C})$ is a vector space over \mathbb{C} of dimension $|G|$.
- The characters of G are linearly independent in $F(G, \mathbb{C})$; in fact, they form a basis.
- The characters are orthonormal under

$$
\left\langle f_{1}, f_{2}\right\rangle=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) \overline{f_{2}(g)}
$$

Fourier transform

- Let V be a complex vector space.
- The Fourier transform ${ }^{\wedge}: F(G, V) \rightarrow F(\widehat{G}, V)$ is a linear transformation defined for $f \in F(G, V)$ by:

$$
\hat{f}(\pi):=\sum_{g \in G} \pi(g) f(g)
$$

- Fourier inversion: ${ }^{\wedge}$ is invertible

$$
f(g)=\frac{1}{|G|} \sum_{\pi \in \hat{G}} \pi(-g) \hat{f}(\pi)
$$

Annihilators

- For H a subgroup of G, define the annihilator

$$
(\widehat{G}: H):=\{\pi \in \widehat{G}: \pi(H)=1\} .
$$

- $(\widehat{G}: H)$ is a subgroup of \widehat{G}.
- $(\widehat{G}: H) \cong(G / H)$, so $|(\widehat{G}: H)|=|G| /|H|$.
- $0 \rightarrow H \rightarrow G \rightarrow G / H \rightarrow 0$ induces
$1 \rightarrow(\widehat{G}: H) \rightarrow \widehat{G} \rightarrow \widehat{H} \rightarrow 1$.
- Double annihilator: $(G:(\widehat{G}: H))=H$.

Poisson summation formula

- For H a subgroup of G and $f: G \rightarrow V$,

$$
\sum_{h \in H} f(h)=\frac{1}{|(\widehat{G}: H)|} \sum_{\pi \in(\hat{G}: H)} \hat{f}(\pi)
$$

Additive codes

- Let the alphabet A be a finite abelian group.
- An additive code of length n over A is a subgroup $C \subset A^{n}$.
- The Hamming weight $\mathrm{wt}(a)=1$ for $a \neq 0$ in A.
- Extend to vectors $a \in A^{n}$ by $w t(a)=\sum w t\left(a_{i}\right)$.

Hamming weight enumerator

- For an additive code $C \subset A^{n}$, the Hamming weight enumerator is the generating function

$$
W_{C}(X, Y):=\sum_{c \in C} X^{n-\mathrm{wt}(c)} Y^{\mathrm{wt}(c)}=\sum_{i=0}^{n} A_{i} X^{n-i} Y^{i}
$$

where A_{i} equals the number of codewords in C of Hamming weight i.

The MacWilliams identities

Theorem
For an additive code $C \subset A^{n}$, with annihilator ($\widehat{A}^{n}: C$),
$W_{C}(X, Y)=\frac{1}{\left|\left(\widehat{A^{n}}: C\right)\right|} W_{\left(\widehat{A}^{n}: C\right)}(X+(|A|-1) Y, X-Y)$.

- Because $|\widehat{A}|=|A|$ and $\left(A^{n}:\left(\widehat{A}^{n}: C\right)\right)=C$, roles of C and $\left(\widehat{A}^{n}: C\right)$ can be reversed.
- This version is due to Delsarte, 1972.

Strategy of proof

- The idea of the proof is due to Gleason.
- Apply the Poisson summation formula

$$
\sum_{h \in H} f(h)=\frac{1}{|(\widehat{G}: H)|} \sum_{\pi \in(\widehat{G}: H)} \hat{f}(\pi)
$$

$$
\begin{aligned}
& \text { with } G=A^{n}, H=C,(\widehat{G}: H)=\left(\widehat{A}^{n}: C\right) \text {, and } \\
& f(h)=X^{n-w t(c)} Y^{\operatorname{wt}(c)} .
\end{aligned}
$$

Form of $\hat{f}, n=1$

- For $f(c)=X^{n-w t(c)} Y^{\mathrm{wt}(c)}$, what is \hat{f} ? Case $n=1$:

$$
\begin{aligned}
\hat{f}(\pi) & =\sum_{a \in A} \pi(a) f(a) \\
& =\sum_{a \in A} \pi(a) X^{1-w t(a)} Y^{w t(a)} \\
& =X+\sum_{a \neq 0} \pi(a) Y \\
& = \begin{cases}X+(|A|-1) Y, & \pi=1, \\
X-Y, & \pi \neq 1 .\end{cases}
\end{aligned}
$$

Form of \hat{f}, general n

- For general n, we take the product of 1-dimensional results.
- For $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \in \widehat{A}^{n}$,

$$
\begin{aligned}
\hat{f}(\pi) & =\hat{f}\left(\pi_{1}\right) \hat{f}\left(\pi_{2}\right) \cdots \hat{f}\left(\pi_{n}\right) \\
& =(X+(|A|-1) Y)^{n-\mathrm{wt}(\pi)}(X-Y)^{\mathrm{wt}(\pi)}
\end{aligned}
$$

- Here, $\operatorname{wt}(\pi)$ counts the number of $\pi_{i} \neq 1$.

Comments

- The format of the MacWilliams identities for additive codes was
$W_{C}(X, Y)=\frac{1}{\left|\left(\widehat{A}^{n}: C\right)\right|} W_{\left(\widehat{A}^{n}: C\right)}(X+(|A|-1) Y, X-Y)$.
- Can we identify $\left(\widehat{A}^{n}: C\right)$ with a subgroup of A^{n} ? In a natural way?
- What about additional structure: if A is a field, a ring, or a module?

Finite fields (a)

- Prime fields: for $\mathbb{F}_{p} \cong \mathbb{Z} / p \mathbb{Z}$, then $\theta_{p}(a)=\exp (2 \pi i a / p)$ is a character of \mathbb{F}_{p}.
- Every character of \mathbb{F}_{p} is of the form $a \mapsto \theta_{p}(b a)$, for some $b \in \mathbb{F}_{p}$.
- In general, consider $\mathbb{F}_{q}, q=p^{\ell}$, with trace function $\operatorname{Tr}_{q / p}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$,
$\operatorname{Tr}_{q / p}(a)=a+a^{p}+a^{p^{2}}+\cdots+a^{p^{\ell-1}}$. Define $\theta_{q}=\theta_{p} \circ \operatorname{Tr}_{q / p}$, a character of \mathbb{F}_{q}.
- Every character of \mathbb{F}_{q} is of the form $a \mapsto \theta_{q}(b a)$, for some $b \in \mathbb{F}_{q}$.

Finite fields (b)

- $\widehat{\mathbb{F}_{q}} \cong \mathbb{F}_{q}$ as vector spaces, and $\widehat{\mathbb{F}_{q}^{n}} \cong \mathbb{F}_{q}^{n}$ as vector spaces: $y \in \mathbb{F}_{q}^{n} \mapsto\left(a \mapsto \theta_{q}(a \cdot y)\right)$, where \cdot is the dot product on \mathbb{F}_{q}^{n}.
- Under this isomorphism, $\left(\widehat{\mathbb{F}_{q}^{n}}: C\right)$ corresponds to

$$
C^{\perp}:=\left\{y \in \mathbb{F}_{q}^{n}: c \cdot y=0, c \in C\right\}
$$

MacWilliams identities for finite fields

- This leads to the original version of the MacWilliams identities, due to MacWilliams, 1961-1962, for $A=\mathbb{F}_{q}$:
$W_{C}(X, Y)=\frac{1}{\left|C^{\perp}\right|} W_{C^{\perp}}(X+(q-1) Y, X-Y)$.

Finite rings

- Suppose $A=R$, a finite ring. The same identifications that worked for finite fields will work here, provided $\widehat{R} \cong R$ as one-sided R-modules.
- Then $\widehat{R}^{n} \cong R^{n}$, and ($\widehat{R}^{n}: C$) can be identified with

$$
\begin{aligned}
I(C) & :=\left\{b \in R^{n}: b \cdot c=0, c \in C\right\}, \\
r(C) & :=\left\{b \in R^{n}: c \cdot b=0, c \in C\right\} .
\end{aligned}
$$

MacWilliams identities for finite rings

- Assume R is a finite ring satisfying $\widehat{R} \cong R$ as one-sided R-modules. Then:
$W_{C}(X, Y)=\frac{1}{|I(C)|} W_{l(C)}(X+(|R|-1) Y, X-Y)$.
- Similarly for $r(C)$ in place of $I(C)$.
- In the next lecture we discuss rings satisfying $\widehat{R} \cong R$: the finite Frobenius rings.

