The Cantor–Bernstein–Schröder Theorem
Let A and B be sets for which there exist injective mappings from A to B and from B to A. Then there is a bijective correspondence between A and B.

We have chosen here a very simple example but one which allows us to follow through the proof of the theorem. Our sets A and B are the real numbers \(\mathbb{R} \), with A represented by the horizontal, \(x \)-axis and B by the vertical, \(y \)-axis. Our injections are \(f : A \rightarrow B \) and \(g : B \rightarrow A \) defined by \(f(x) = e^{-x} \) and \(g(y) = y \), respectively. Of course, \(g \) is already a bijection between A and B: it matches every point on the \(y \)-axis with the exactly corresponding point on the \(x \)-axis. But \(f \) is not: it maps the \(x \)-axis to the positive \(y \)-axis, as indicated by the green arrows at \(\mathbb{R} \). The proof extends \(f \) to a bijection by combining it with \(g \).

The idea is to define a function \(F \) on subsets of A thus:

\[
F(X) = A \setminus g(B \setminus f(X)).
\]

From \(\mathbb{R} \) onwards this is iterated: by \(5 \) we have constructed \(F(A) \) and are in the process of constructing \(F^2(A) \). The crux is, it can be shown that \(A_0 = A \cap F(A) \cap F^2(A) \cap \ldots \) is a fixed point of \(F \), i.e. \(F(A_0) = A_0 \). This means that \(A \setminus g(B \setminus f(A_0)) = A_0 \) so \(g(B \setminus f(A_0)) = A \setminus A_0 \). Et voilà,

\[
f_0(x) = \begin{cases} f(x) & \text{if } x \in A_0 \\ g^{-1}(x) & \text{if } x \in A \setminus A_0 \end{cases}
\]

is a well-defined bijection from A to B. In our example \(A_0 \) is a single point: the solution to the equation \(e^{-x} = x \), the so-called Omega constant, \(\Omega \approx 0.57 \). Result: in our example, \(f_0 \) and \(g \) are identical!