THEOREM OF THE DAY

Cantor’s Theorem The power set 2^X of a set X cannot be put into one to one correspondence with X. Thus the cardinality of 2^X is strictly greater than that of X.

Proof: Think of the elements of X as some, possibly infinite, collection of people. The power set 2^X is the set of all subsets of X and we can think of these as all possible communities made up from these people. Now imagine putting the people into one to one correspondence with these possible communities — that is, each person is assigned a unique community and vice versa. If a person is assigned to a community to which they happen to belong then call them a *guard*, otherwise call them a *spy*. The community consisting of all spies is itself a (possibly infinite) community. Is it assigned to a guard or a spy? Neither! A spy would belong to the community, so would be a guard; a guard would *not* belong, so would be a spy. This contradiction proves that the one to one correspondence cannot exist. QED.

This theorem about different ‘sizes’ of infinity strengthens Cantor’s Uncountability Theorem which asserts that the power set of a *countably infinite* set is uncountable. The above argument is essentially another manifestation of the *diagonalisation method*: assume some kind of listing; produce a new object for the list from existing listed objects; show that the new object invalidates the listing. The result is a well-known mathematical phenomenon: an easy proof of a deep and conceptually difficult theorem. The notation $\mathcal{P}(X)$ is often used for power set; the notation 2^X is suggested by the fact that, for a finite set of size n, the set of all (finite) subsets has size 2^n. This follows using an ‘include/exclude’-type argument that we see extended to the infinite case in the Uncountability Theorem.

Web link: www.math.hawaii.edu/~dale/godel/godel.html

Created by Robin Whitty for www.theoremoftheday.org