THEOREM OF THE DAY

Goodstein’s Theorem For a positive integer M, derive the hereditary base k representation, in which every numeral is either k or zero, as follows: (1) write M in base k, as $M = a_0 k^0 + a_1 k^1 + \ldots + a_{n-1} k^{n-1} + a_n k^n$, for suitable a_i in $\{0, \ldots, k - 1\}$; (2) for $0 \leq i \leq n$, write $a_i k^i$ as a sum of a_i copies of k^i; (3) apply steps (1) – (3) to all occurrences of $1, \ldots, k - 1$ in exponents. Now suppose the Goodstein sequence of M is obtained by applying the following algorithm, starting at base $k = 2$:

1. **(G1)** write M in hereditary base k notation;
2. **(G2)** replace every occurrence of ‘k’ by ‘$k + 1$’ and subtract 1 from the resulting number;
3. **(G3)** if the result is zero then STOP; otherwise apply (G1) – (G3) to the result with base k replaced by base $k + 1$.

Then, for every positive integer M, the Goodstein sequence terminates.

Hereditary base 5 example:

1. $15678 \xrightarrow{(1)} 3 \times 5^0 + 2 \times 5^2 + 1 \times 5^6$
2. $3 \xrightarrow{(2)} 5^0 + 5^0 + 5^2 + 5^2 + 5^6$
3. $5 \xrightarrow{(3)} 5^0 + 5^0 + 5^0 + 5^0 + 5^0 + 5^0 + 5^0 + 5^0 + 5^0 + 5^0$

<table>
<thead>
<tr>
<th>k</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>hereditary base k</td>
<td>2^2+2^0</td>
<td>3^0</td>
<td>$4^0+4^0+4^0$</td>
<td>5^0+5^0</td>
<td>6^0</td>
</tr>
<tr>
<td>$k \to k+1$</td>
<td>3^3+3^0</td>
<td>4^0</td>
<td>$5^0+5^0+5^0$</td>
<td>6^0+6^0</td>
<td>7^0</td>
</tr>
<tr>
<td>subtract 1</td>
<td>3^3</td>
<td>4^0-1</td>
<td>5^0+5^0</td>
<td>6^0</td>
<td>0</td>
</tr>
</tbody>
</table>

The Goodstein sequence for $M = 3$ is seen here to terminate after 5 iterations of the algorithm but this is the largest value of M for which the Goodstein sequence can feasibly be constructed: even for $M = 4$ it requires many more iterations than there are atoms in the universe!

Goodstein’s 1944 theorem is important because it can be stated as a sentence in Peano arithmetic but no proof exists within this system. It is therefore a ‘natural’ example of Gödel’s First Incompleteness Theorem in action.

Web link: old.nationalcurvebank.org/goodstein/goodstein.htm

Further reading: An Introduction to Formal Logic by Peter Smith, Cambridge University Press, 2003.