THEOREM OF THE DAY

Strassen's Matrix Theorem (a Theorem Under Construction!) Two $n \times n$ matrices can be multiplied in fewer than n^{3} (multiplication) steps.

Instructions for using this diagram

1. Entries of matrices A and B are arranged as shown. Now seven products are formed as follows:
2. Entries along curved lines (L_{1}, L_{2} and L_{7}, passing four entries) and straight lines (L_{3}, L_{4}, L_{5} and L_{6}, passing three) are added within each matrix and the sums are multiplied between the matrices. Line L_{7} gives ($a_{11}+$ $\left.a_{22}\right) \times\left(b_{11}+b_{22}\right)$, for example. But \ldots
3. ... where green (21) and blue (11) appear consecutively, the blue entry is subtracted rather than added; thus L_{6} gives $a_{22}\left(b_{21}-b_{11}\right)$; and ...
4. ... a red (22) consecutively with yellow (12) is likewise subtracted: L_{1} gives $\left(a_{12}-a_{22}\right)\left(b_{21}+b_{22}\right)$.
5. Now $A B=\left(\begin{array}{ll}a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\ a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}\end{array}\right)=\left(\begin{array}{cc}L_{1}-L_{3}+L_{6}+L_{7} & L_{3}+L_{4} \\ L_{5}+L_{6} & L_{2}+L_{4}-L_{5}+L_{7}\end{array}\right)$.

6. For larger matrices (padded out to size $2^{k} \times 2^{k}$ as necessary) partition into square blocks and proceed as above.

Construction notes: 1969: Volker Strassen amazes the world by multiplying $n \times n$ matrices in ($\mathrm{n}^{2.808 . . .) ~(m u l t i p l i c a t i o n ~) ~ s t e p s . ~}$ 1970 \& $80 \mathrm{~s}: ~ S t r a s s e n ' s ~ r e s u l t ~ l e a d s ~ t o ~ a ~ s u c c e s s i o n ~ o f ~ l o w e r ~ v a l u e s ~ f o r ~ t h e ~ e x p o n e n t, ~ w h i c h ~ b e c o m e s ~ k n o w n ~ a s ~ © . ~$ 1987: Don Coppersmith and Shmuel Winograd achieve best value for ω to date with O($n^{2.376 . .)}$) algorithm.
2003: Chris Umans and Henry Cohn discover group theoretic formulation of Strassen's approach.
2005: With Robert Kleinberg and Balazs Szegedy they reproduce Coppersmith and Winograd group theoretically and give two conjectures whose proof will reduce ω to its theoretical minimum value of 2 .
2011: Virginia Vassilevska Williams reduces ω to 2.373. Meanwhile, Strassen's original method remains the fastest practical way to multiply matrices larger than around 30×30.

Web link: an excellent overview: archive.siam.org/news/news.php?id=174; click the icon (top right) for news of the latest developments.
Further reading: Algorithms and Complexity, 2nd edition by Herbert S. Wilf, A K Peters, 2003.

