THEOREM OF THE DAY

Strassen's Matrix Theorem (a Theorem Under Construction!) *Two n × n matrices can be multiplied*

in fewer than n^3 (multiplication) steps.

Instructions for using this diagram

- 1. Entries of matrices *A* and *B* are arranged as shown. Now seven products are formed as follows:
- 2. Entries along curved lines $(L_1, L_2 \text{ and } L_7, \text{ passing four entries})$ and straight lines $(L_3, L_4, L_5 \text{ and } L_6, \text{ passing three})$ are added *within each matrix* and the sums are multiplied *between the matrices*. Line L_7 gives $(a_{11} + a_{22}) \times (b_{11} + b_{22})$, for example. *But* ...
- 3. ... where green (21) and blue (11) appear consecutively, the blue entry is subtracted rather than added; thus L_6 gives $a_{22}(b_{21} b_{11})$; and ...
- 4. ... a red (22) consecutively with yellow (12) is likewise subtracted: L_1 gives $(a_{12} a_{22})(b_{21} + b_{22})$.

5. Now
$$AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix} = \begin{pmatrix} L_1 - L_3 + L_6 + L_7 \\ L_5 + L_6 & L_7 \end{pmatrix}$$

6. For larger matrices (padded out to size $2^k \times 2^k$ as necessary) partition into square blocks and proceed as above.

Web link: an excellent overview: archive.siam.org/news/news.php?id=174; click the *icon* (top right) for news of the latest developments. **Further reading:** *Algorithms and Complexity, 2nd edition* by Herbert S. Wilf, A K Peters, 2003.

