THEOREM OF THE DAY

Arrow's Impossibility Theorem Let P be a set of m politicians and let $V = \{1, ..., n\}, n \ge 1$, be a set of voters. Let \mathcal{R} be the set of all two-variable functions from $V \times P$ to $\{1, ..., m\}$ such that every $r \in \mathcal{R}$ is a ranking of the members of P, for each $v \in V$; that is, for each v, the values $r(v, p), p \in P$, constitute a permutation of $\{1, ..., m\}$. Now suppose we have a social choice function $R : \mathcal{R} \times P \rightarrow \{1, ..., m\}$ which combines each two-variable ranking function $r \in \mathcal{R}$ with P to induce a one-variable ranking function from P to $\{1, ..., m\}$: for each $r \in \mathcal{R}$, the values R(r, p) are again a permutation of $\{1, ..., m\}$. Then, if |P| > 2, our choice of R cannot satisfy all of the following three requirements for fair voting:

Pareto Efficiency: *if everyone is unanimous about the respective merits of two politicians, then the social choice function should reflect this: for all* $r \in \mathcal{R}$ *, if* r(v, p) > r(v, q) *for all* $v \in V$ *, then* R(r, p) > R(r, q)*;*

Independence from Irrelevant Alternatives (IIA): *if rankings r and r' agree on the relative merits of two politicians,* say, p and q, then this should be reflected in the social choice function: if, for all $v \in V$, r(v, p) > r(v, q) if and only

if r'(v, p) > r'(v, q), then R(r, p) > R(r, q) if and only if R(r', p) > R(r', q).

Non-dictatorship: no voter has the property that the social choice function always agrees with them regardless of what other voters do: there is no $v \in V$ for which R(r, p) = r(v, p) for all $r \in \mathcal{R}$.

On the right two members, *r* and *r'*, of \mathcal{R} are shown, for $P = \{x, y, z\}$ and $V = \{1, 2, 3\}$. The same social choice function *R* has been applied to both, displayed as the rear, white, bars. To define by example, the value of R(r, z), the rightmost bar in the left-hand chart, was calculated by taking the product $r(1, z) \times r(2, z) \times r(3, z) = 3 \times 3 \times 1 = 9$; this was between the other two products, $1 \times 1 \times 2$ and $2 \times 2 \times 3$, so *x*, *y* and *z* were ranked 1st, 3rd and 2nd, respectively (represented here as 3, 5 and 4, to make them stand out). But this choice of *R* has violated IIA: *r* and *r'* agree, for 1, 2 and 3, on the relative merits of *y* and *z*, but R(r, y) > R(r, z) while R(r', y) < R(r', z).

As Kenneth Arrow put it in his original 1948 Rand report: "There is no method of aggregating individual preferences which leads to a consistent social preferences scale."

Web link: derekbruff.org/voting/. The version of Arrow's Theorem given above is based on the relevant Wikipedia entry.

 Further reading: Game Theory and Its Applications in the Social and Biological Sciences, by Andrew M. Colman, Routledge Falmer,

 1995.
 Created by Robin Whitty for www.theoremoftheday.org