
THEOREM OF THE DAY
Kasteleyn’s Theorem Suppose that G is a planar graph drawn in the plane. Then
1. we can orient the edges so that every face has an odd number of clockwise-oriented edges, and
2. if A(G) is the signed adjacency matrix of such an orientation of G then

number of perfect matchings of G =
√

det(A(G)).

A perfect matching is set of disjoint edges which includes every vertex. The graph top right, for example, has four
perfect matchings, as shown below.

The example on the right illustrates how part (1) of Kasteleyn’s theorem is proved.

1. Take a spanning treeT of G and orient its edges arbitrarily (the heavy, red edges in the2nd drawing on the
right).

2. Take the dual graph (vertices are faces ofG, edges cross edges ofG from face to face). In the dual, take a
spanning treeT ∗ whose edges cross edges ofG that are not inT (the dotted edges in the third drawing).

3. Starting at leaves ofT ∗ located in internal faces, orient theG edges crossed byT ∗ edges so as to give each face
an odd number of clockwise-oriented edges (the heavy, blue arrows in the third drawing).

The faces of our graph, in the order in which they are oriented, end up with the following numbers of clockwise
edges: 1543:1; 456:1; 2346:3; 132:1. As a check, the outside edge
should also be ‘odd’: 1562:1;.
Our example has resulted in an oriented version of the original
graphG as shown, far right. Its signed adjacency matrix is shown
near right: the entry in theith row and jth column is set to+1
to record an edge oriented fromi to j; and−1 for an edge ori-
ented fromj to i. The determinant function, calculated rapidly by
a spreadsheet or mathematics package, has value 16.
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1 2 3 4 5 6
1 1 1 −1
2 −1 1 −1
3 −1 −1 1
4 −1 −1 −1
5 1 1 −1
6 1 1 1
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Enumeration of perfect matchings has important applications in statistical physics but is computationally infeasible in the
general case. The enumeration equates to a generalisation of the determinant function discovered by Johann Friedrich Pfaff in
1815 and dubbed thePfaffian by Cayley. For them×n grid, Pieter Willem Kasteleyn and, independently, HNV Temperley and
Michael Fisher showed in 1961 how a skew-symmetric version of the adjacency matrix can be adopted, guaranteeing (Cayley,
1847) that the Pfaffian is the square of the easily computed determinant. Kasteleyn’s approach generalised to his celebrated
1967 theorem for arbitrary planar graphs, presented here.

Web link: www.ams.org/notices/200503/what-is.pdf
Further reading: Thirty-three Miniatures: Mathematical and Algorithmic Applications of Linear Algebraby Jiřı̀ Matoušek, AMS, 2010.
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