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Bricks

Kira Bhana and Tony Forbes

Given a supply of 1 x 2 x 6 bricks, try packing 42 of them into an 8 X 8 x 8
cube, a task which should not give you too much trouble. Or maybe you
can pack 28 of these things into a 7 x 7 x 7 cube—or prove that it cannot be
done. More generally, what we are really after is the answer to the question:

What is the mazimum number of 1 x 2 x 6 bricks that you can
pack into an n X n xn cube, n=4,5,6, ...7

In the table we give some upper and lower bounds. Observe that when n is
even the maximum packing number is determined exactly—the upper and
lower bounds are the same.

n 4 56 78 910 11 12 13 14 15 16 17 18 19
|n3/12] 5 10 18 28 42 60 83 110 144 183 228 281 341 409 486 571
unused 4 50789411 0 1 8 3 4 5 0 7

upper bound | 0 2 18 28 42 60 82 110 144 183 228 280 340 409 486 571

unused 64101 0 7 8 916 11 0 1 8 15 16 5 0 7
lower bound | 0 2 18 27 42 57 82 108 144 180 228 276 340 405 486 567
unused 64101 019 84516 35 0 37 8 63 16 53 0 55

The ‘unused’ lines indicate how many holes are left unfilled by the possibly
hypothetical packing. The lower bounds are obtained as follows.

n = 6k Left for the reader.

n = 6k +2 Lay 3k% 4 2k bricks flat on an n x n square to leave a 2 x 2
hole in a corner. Pile n of these structures vertically and drop 2k bricks
into the 2 x 2 x n hole:

n(3k* + 2k) + 2k =

best possible.

n = 4 Left for the reader.

n = 6k +4 > 10 Lay 8k bricks flat to make a wall 4 units thick that
encloses an (n —8) x (n — 8) square region. If n > 10, apply the first part of

the 6(k — 1) 4 2 construction to the region. Thus an n x n square is covered
except for a 2 x 2 hole. Pile n of these structures vertically and drop 2k
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bricks into the 2 x 2 x n hole:

n(n? —4) n® — 16 n3 )
M =3 op = = |2 —1 brick
2 12 12 HICES,

leaving a volume of 16 unoccupied.

Since 16 exceeds the volume of a brick by 4, it is tempting to suggest
that perhaps there is some smart arrangement which accommodates one
extra. However, no such packing exists; |[n®/12] — 1 is best possible, as we
shall prove in Theorem 1, below.

n =5 See Problem 315.1 on page 10.

Odd n > 7 Take the arrangement for the (n—1) x(n—1)x (n—1) cube
and clad three mutually orthogonal faces with as many bricks as possible.
Thus, for example, 18 +3-3 =27 forn =7, and 424+ 3-5 =57 forn =9.

In some cases we can improve on this construction.

n = 11 Use 20 bricks to build a wall 2 units high and 5 units thick
that encloses a 1 x 1 x 2 hole. Pile five of these structures vertically and lay
eight bricks on top: 5-20 + 8 = 108 bricks.

n = 15 See Theorem 2, below.

n = 17 Use 40 bricks to build a wall 2 units high and 5 units thick
that encloses a 7 x 7 x 2 hole into which place eight more bricks. Pile eight
of these structures vertically and lay 21 bricks on top: 848 4+ 21 = 405
bricks.

The reader is invited to reduce the gaps between the lower and upper
bounds given for odd n in the table.

Also, we would be very interested in the smallest k for which you can
put 18%3 4+ 9k2 + 1 bricks in a (6k + 1) x (6k + 1) x (6k + 1) cube. To show
that this is a sensible request, put k = 10, say. The construction described
above involving the cladding of three faces of a 60 x 60 x 60 cube uses 18900
bricks and leaves an unused volume of 181, quite a lot more than sufficient
for one extra brick.

If it helps, there is a child’s toy marketed under the name Tumbling
Tower that consists of fifty-four 1 x 2 x 6 bricks neatly fashioned out of
wood and packaged in a 6 X 6 x 18 cardboard and plastic box. Although we
suspect its intended purpose is not to investigate the filling of cubical bins
with small cuboids, we did actually find it useful.

Finally, we have the following results, which show that the trivial upper
bound cannot be attained for n =4 (mod 6) and n = 3 (mod 12).
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Theorem 1 Let k be a positive integer and let n = 6k + 4. The maximum
number of 1 x 2 X 6 bricks that you can pack into an n X n X n cube is
[n3/12] — 1.

Proof We have already shown how to pack the n X n x n cube with
|n3/12| — 1 bricks. So we only need to prove that |n®/12] is impossible.

We think it is safe to assume that a brick in the packing must be ori-
entated so that each of its six faces lies on one of the 3(n + 1) grid-planes
that partition the cube into n3 subcubes.

The proof involves polynomials in three complex variables. It might be
helpful to follow the argument with n = 10.

Let the cube occupy [0,n] x [0,n] x [0,n] in Euclidean 3-dimensional
space, and suppose it is packed with [n3/12] bricks to leave four of its
subcubes unoccupied. The location of a compact set of points S is the
(a,b,c) € S that minimizes each of the coordinates a, b and c.

Associate a subcube located at (a,b,c) with the polynomial z%y’z¢,
where z, y and z are complex variables. Then the sum of the n® polynomials
associated with the n? subcubes is

n—1ln—1n—1

Cls) = S5 S anypss

a=0 b=0 c=0
A brick located at (a, b, ) is represented by a polynomial
:Caybzc Bj (:L', Y, Z)v

where Bj(z,y,2), j € {1,2, ..., 6} is one of

Bi(z,y,2) = (1 +x+z?+23 +a2* + 251 +y),
Bo(z,y,2) = (I4+z+2? +23+ 2 +2°)(1 + 2),
By(z,y,2) = (L+y+y*+y° +y' +4°)(1+a),
By(z,y,2) = (L+y+y*+y° +y" +4°)(1+2),
Bs(z,y,2) = (14+2z+22+22+ 224+ 2501 +2),
Bs(w,y,2) = (14+z+22+ 22424 +2°) (14 9),

depending on the orientation of the brick in the cube. For example,
Bgs(z,y, z) corresponds to a brick standing upright with its side of length 2
in the direction of the y-axis. The polynomial represents the 12 subcubes oc-
cupied by the brick, on the assumption that it is located at (0,0, 0). Shifting
the brick to (a, b, c) corresponds to multiplying Bg(x,y, z) by 2%’z
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The sum of the polynomials associated with the bricks in the packing is

6
B(z,y,2) = Y_ Pj(x,y,2)B;(x,y,2)

j=1

for some polynomials P (z,y, 2), Pa(z,y,2), ..., Ps(x,y,2). Thus B(z,y, 2)
is the sum of |n3/12] expressions of the form z%y®2¢B;(z,y,2) for various
(a,b,c) and various j € {1,2,...,6}.

But there are also four points corresponding to the unused subcubes.
Assuming they occur at distinct locations

(al,blacl)a (a25b2362)7 (ag,b3,63), (a4,b4,04),

the sum of their associated polynomials is

x Y, 2 E s bhzch.

h=1

Note that U(z,y, z) depends on the parameters ay, by, cp.

For the assumed packing, there must exist polynomials Pj(z,y, z),
Py(z,y,2), ..., Ps(x,y,z) and point coordinates ayp, by, cp € {0,1,...,n —
1}, h =1, 2, 3, 4, such that

C(z,y,2) = B(x,y,2)+U(z,y,%z) for all complex z,vy, 2. (1)

Now for the clever part. Put

V3i

N | =
N

a primitive 6th root of 1. Then, observing that 1+ p+p?+p% +p*+p® =0,
we have

n—1ln—1n-—1

Clopp) = Y. DS 0t = (Ltp+p?+-+p" Y’

a=0 b=0 c=0
= (1+p+p2+p3)3
= —3V3i

and
B(p,p,p) = 0 for every choice of the polynomials P;.
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We have annihilated the bricks—so we do not have to worry about where
they are. To deal with the unused part, we see that

4
U(p, p.p) Z

is the sum of four powers of p and therefore cannot have absolute value
greater than 4. However |C(p, p, p)| = 3v/3 > 5. Hence for any choice of
(an,bn,crn), h=1,2, 3,4, we have U(p, p, p) # C(p, p, p) and, recalling that
B(p, p,p) =0,

Clp,psp) # Blp,p,p)+Ulp,p,p),

contradicting (1). O

Theorem 2 Let k be a positive integer and let n = 12k + 3. You cannot
pack [n3/12] 1 x 2 x 6 bricks into an n X n X n cube.

Proof Assume the cube occupies [0, n] x [0,n] x [0, n] and it is packed with
[n3/12] bricks to leave three of its subcubes unoccupied.

We employ the same method as in Theorem 1. With C(z,y,z2),
B(z,y,z) and U(x,y, z) defined as before,

n—ln—1n-—1

Clopip) = DD p*'p°

a=0 b=0 c¢=0

(1+p+p2+~~+p12k+2)3

(1+p+p2)3 = -8,
0,

B(p, p, p)

3
Ulp,psp) = Y_p™p™
h=1

where p = 1/2 ++/3i/2 and each of ay, by, cn, h = 1, 2, 3, can take any
value in {0,1,...,n — 1}. But for any choice of these parameters,

[U(p,p,p)| < 3 < 8 = [Clppp)l-

Hence
C(p,p,p) # Blp,p,p)+Ulp,p,p)

and therefore the packing does not exist. (|
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Solution 312.6 — 53 bricks

You cannot fit 54 1 x 1 x 4 bricks into a 6 x 6 x 6 box. If you
can devise a simple proof, we would like to see it. What about
53 bricks?

Tony Forbes

We show that you cannot pack 53 bricks into a 6 x 6 x 6 cube. There is
actually an easy way to prove this by partitioning the cube into 27 coloured
2 x 2 x 2 subcubes. However, in my opinion the somewhat more complicated
proof T offer, which is similar to that of Theorem 1 on page 3, is far too
interesting to be ignored. We might as well deal with the general case where
the cube has side congruent to 2 modulo 4.

Theorem 1 You cannot pack (4m + 2)%/4 — 1 bricks of size 1 x 1 x 4 into
a (dm+2) x (4dm + 2) x (4m + 2) cube.

Proof Position the cube to occupy [0,4m + 2] x [0,4m + 2] x [0,4m + 2] in
Euclidean 3-dimensional space. Suppose (4m + 2)3/4 — 1 bricks are packed
in the cube to leave 4 units unoccupied.

A point (a,b,c) is represented by the monomial expression z%y’2¢ in
variables x,y, z, The whole cube is represented by the polynomial

4m—+14m—+14m+1
Clod) = 3 ), D o'
a=0 b=0 c=
A brick polynomial is one of
Bl(-T,y,Z) = 1+£E+IL’2 +QZ’37
By(w,y,2) = 1+y+y° +y°,
Bg(x,y,Z) = 1+Z+Z2 +237
depending on its orientation. The bricks in the packing are represented by

3

B(w,y,2) = Y _ Pr(x,y,2)Br(,y,2),

r=1

where Pj(x,y,z), Pa(x,y,2) and Ps(x,y,z) are polynomials. The polyno-
mial representing the holes at (ap,bn,cn), h =1, 2, 3,4, is

ZC Y, 2 § xah bn ZC}L.
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For the supposed packing, there must exist polynomials P, (x,y, 2), r € {1,
2, 3}, and point coordinates ap,bp,cp € {0,1,...,4m + 1}, h =1, 2, 3, 4,
such that

O(%%Z) = B(:z:,y,z)—l—U(x,y,z) for all T, Y,z EH, (1)
where H is the ring of quaternions.

We represent a quaternion by an expression of the form a+ gi+vj+ 0k,
where «, 3, 7, § are real numbers and 4, j and k are the basis elements.
Addition is performed by doing each component separately:

a1tB1i+7J + 01k + ag + Bai+y2) + o2k
= (oa +a2)+ (B1+ B2)i+ (11 +2)) + (61 + d2)k.
Multiplication is done in the usual way,
(a1 + Brity1j + 61k)(az + Bai + 27 + d2k)
= aiag + a1 f2i + a172j + 162k
+ Bragi + B1 P21 + Biy2i) + P102ik
+ o) + 1168251 + 117255 + 11625k
+ d1aok + 0182k + 0172kj + 0102kkK,

which is then simplified by Table 1. Using Table 1, we see that B (4,5, k) =
Bs(i,j, k) = Bs(i, j, k) = 0 and therefore

B(i,j,k) = 0. (2)

Also
4m—+14m~+14m+1

Clgik) = D> > > i
c=0

a=0 b=0
= (1+)A+)1+k) = Q+i+j+k)1+k)
= l+itj+k+k—j+i—1 = 2 +2k (3)

Table 1: Quaternion multiplication

x |1 i 5k
11 i ]
il -1k —j
il -k -1
[
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Table 2: Hole coordinates

a mod 2 0 0 0 0 1 1 1 1

b mod 2 0 0 1 1 0 0 1 1

c mod 2 0 1 0 1 0 1 0 1
+

i50ke 1 4k +j +i +i 4§ £k £l

Now consider the holes. We have
4
Ui g k) = i k.
h=1

Apart from a plus or minus sign, i%;j°k¢ depends only on the parities of the
coordinates (a, b, c) as indicated in Table 2, which clearly shows that each
term of U(i, 7, k) must be one of the eight elements of the set

R = {17 _1a7:7 _ivjv _.ja k7 _k}
For (1) to be satisfied, we must have
Ui, j, k) = 2i+ 2k. (4)

by (2) and (3). The only way to make this quantity from four elements of
R, is i+ i+ k + k, and we may assume without loss of generality that

Z’aljblkcl — Z’azjbzkcz — i, Z'agjbgkc;g — Z'a4jb4kC4 — k.
Therefore

(a1,b1,¢1), (az,ba,ce) = (0,1,1) or (1,0,0) (mod 2),
(as, b3, c3), (as,bs,cqa) = (0,0,1) or (1,1,0) (mod 2).

Now remove the bricks, reflect them in the plane x = y and return them to
the cube. The hole that previously occupied position (ayp, by, cp) is now at
(bh,ah,ch), h=1, 2, 3, 4. But then

(bl,al,cl), (bg,a,g,CQ) = (0, 1,0) or (1,0, 1) (mod 2),
(b3, as,c3), (bg,aq,cq) = (0,0,1) or (1,1,0) (mod 2),

and it follows that
ibljal kS =4, ,L'szaz k°2 = +j, ’iijaskCS = +k, ib4ja4/€01 = +k,
which contradicts (4). O
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What makes this proof work seems to be the non-symmetry of (3) under
permutations of 7, j and k. For instance, putting x = j and y = ¢ gives

CG,ik) = A+)A+)A+k) = A+i4+j—k)(1+k) = 2+2,

and again we can get a contradiction by a suitable transformation of the
bricks.

As can be seen from the results summarized in the table below, for
the general problem of finding optimal packings of 1 x 1 x 4 bricks in n-
sided cubes, the only case where the trivial upper bound is not attained is
n =2 (mod 4).

Cube side, n Maximum number of bricks | Holes
n=0,1,2,3 0 n3
n=0 (mod 4), n >4 n?/4

n=2
n=3

(

n=1 (mod4),n>5 [n3/4]
(
(

) 0
) 1
mod 4) n3/4—2 8
),n>7 [n3/4] 3
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Problem 315.1 — Rectangles in a square
Tony Forbes

How many 1 x (n + 1) rectangles can you fit in an n x n square?

Obviously fitting any at all might be a bit difficult when n = 1 or 2.
But as n increases the difference between n and v/2n becomes more and
more significant. There is I think a crossover point at

2
n = = 4.8284,
V2-1

where you can just squeeze in one (n + 1) x 1 rectangle along the diagonal.

Problem 315.4 — Cylinder in a cube

What is the largest r such that a cylinder of radius r and length 6 will fit
in a cube of side 5?7

Obviously this is one of an infinite number of similar problems. I (TF)

stumbled upon this particular instance while I was doing something else. It
interested me because the answer seems to be 1.0 or thereabouts.




M500 317 Page 1

Packing 1:2:6 bricks into cubes
Kira Bhana and Tony Forbes

Let M(n) denote the maximum number of 1 x 2 x 6 bricks that you can
pack into an n X n x n cube. In M500 315 we saw that

n/12 if n =0 (mod 6),
M(n) = |n3/12] if n =2 (mod 6),
n3/12] =1 if n=4 (mod 6) and n > 10,
but all we could manage for odd n > 7 were non-equal upper and lower
bounds.

n 7 9 11 13 15 17 19 21
Ln3/12j 28 60 110 183 281 409 571 771
unused 7 9 11 1 3 5 7 9
upper bound | 28 60 110 183 280 409 571 771
unused 7 9 11 1 15 5 7 9
lower bound 27 57 108 180 276 405 567 765
unused 19 45 35 37 63 53 55 81

Here we report a small amount of progress. The case n = 7 is settled and
we have a slight improvement for n = 12k + 9.

Perhaps we should make it clear
that we are considering only situations
where the bricks are orientated so that
their faces lie on the grid-planes that di-
vide the nxn xn cube into n® subcubes.
In other words, a brick must occupy ex-
actly 12 of the 1 x 1 x 1 subcubes into
which the n x n X n cube is naturally
divided. Let us call these regular pack-
ings.

Obviously non-regular packings do
exist. For example, there is a certain
amount of flexibility with the position-
ing of some of the 27 bricks in the
7 X 7 x 7 cube shown on the right. However, in all cases we have looked
at it is possible to make a non-regular packing regular. Anyway, we shall
redefine M (n) to be the maximum possible number of 1 x 2 x 6 bricks in a
regular packing of an n X n X n cube.
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Theorem 1 Ifn =9 (mod 12), then M(n) < [n3/12] — 1.

Proof Suppose n =9 (mod 12) and let the cube occupy
[0,n] x [0,n] x [0,n]

in Euclidean 3-dimensional space. Suppose it is packed with |n3/12] =
(n® —9)/12 1 x 2 x 6 bricks to leave 9 of its subcubes unoccupied.

The proof is the same as that of Theorem 1 on page 3 of M500 315 except
that the ring is different. We represent a point (a, b, ¢) by the monomial

x%y®2¢. Then the collection of n® subcubes is represented by

n—1ln—-1n—-1
9 ) 3T
a=0 b=0 ¢=0
a brick located at (a, b, ¢) is represented by a polynomial
B = l‘abech(I,’%Z), j€{1327"-36}a
where
Bi=0+z+---+2°14y), Bo=1+z+---+25(1 + 2),
By=(1+y+-+y’)(1+a), Ba=(1+y+ - +3")(1+2),
By=(1+z+-+2")(1+2), Be=(1+z+ - +2")1+y),

and the holes at locations (ap,bp,cp), h =1,2,...,9 are represented by

9
U = § xahybhzch.
h=1

In the rest of the proof we work in Zsgs, the ring of integers modulo 365.
Put 2 =y = z = 9. The powers of 9 are 1, 9, 81, 364, 356, 284. Also 9 =1
and

1+9+9°+9°+9'+9° = 0.

Then
C = (14949 +-- 49" = (1+9+81)% = 211,

B =0,
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and for the packing to exist we must have C = B 4+ U. Hence
U = 211 for some ap,bp,cp € {0,1,...,n—1}, h=1,2,...,9. (1)

But U is a sum of 9 powers of 9, and a straightforward computation shows
that no such sum is equal to 211, contradicting (1). d

We don’t know if the number 365 = 5 x 73 has any special significance.
It was found simply by looking for it.

There are 25 numbers modulo 365 that are not representable as sums
of 9 powers of 9, namely

0,2,8,10, 18,64, 72, 74,80, 82, 90, 154, 162,
203,211, 275, 283, 285, 291, 293, 301, 347, 355, 357, 363,

which occur as 0 and twelve + pairs. Fortunately for our proof the list
includes 211. One could argue that our probability of success is 25/365 =
0.068, which is rather small. So we cannot help thinking that something
other than coincidence is at work.

We turn now to n = 7. A slice of the 7 x 7 X 7 cube is a subset in the
form of a 1 X 7 x 7 cuboid that may be orientated in any of the three axis
directions. A slice is internal if neither of its 7 x 7 faces is adjacent to a cube
face. It is clear that there are 21 distinct slices of which 15 are internal.

Lemma 1 Suppose there is a regular packing of 28 1 x 2 x 6 bricks in a
7 x 7 x 7T cube. Then each of the 15 internal slices of the cube contains
ezactly one hole.
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Proof Assume the packing of 28 bricks exists and let 7" be the union of
three distinct parallel internal slices. The picture on page 2 shows a possible
arrangement.

A brick laid with its long axis parallel to the slices occupies 12, 6 or

0 subcubes of T. A brick laid orthogonal to the slices spans all three and
occupies 6 subcubes of T. These are the only possibilities.

Let b, denote the number of bricks that occupy r subcubes of T, and
let u be the number of holes in T'. Since T consists of 147 subcubes we have

12b12+6b6 = 147—U, OSUS’?,

and therefore u = 3.

Denote the slices of T' by T4, T, T3, and let Ty, T5 be the other two
internal slices parallel to those of T'.

Suppose one slice, which we may assume is 77, contains more than
one hole. Then the previous argument with 77, Ty and T5 implies T, U T5
contains at most one hole. But then T UT,UT5 contains at most two holes,
a contradiction by the same argument with Ts, Ty and T5.

Hence there must be exactly one hole in each of T1, T3, ..., T5. Similarly
for other ten internal slices. O

Theorem 2 Any regular packing of 1 x 2 X 6 bricks in a 7 X 7 X 7 cube has
at most 27 bricks.

Proof Take the obvious packing of eighteen 1 x 2 x 6 bricks in a 6 X 6 x 6
cube and attach three bricks to each of three mutually orthogonal faces to
get a packing of 27 bricks, as illustrated on page 0. Thus M (7) > 27.

Assume the cube is packed with 28 bricks, and recall that the packing
leaves 7 holes. Let U be the union of three mutually orthogonal internal
slices. Then U consist of 127 subcubes with a single subcube at the intersec-
tion of the three slices. The picture on page 4 shows a possible arrangement.

Depending on how it is laid, a brick must occupy 12, 7 or 2 subcubes
of U. Let b, denote the number of bricks that occupy r subcubes of U, and
let w be the number of holes in U. Then

12b1s + 7b7 +2by = 127 — u,
bio + b7 + by = 28.

Multiplying the second equality by 7 and subtracting gives
—5b1a +5by = 69 4 u, which implies v = 1 or 6.
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But u < 3 follows from Lemma 1. Therefore © = 1 and, again by Lemma 1,
the hole must occur at the intersection of the three slices. However, each of
the three slices making up U could have been any of five parallel internal
slices. Therefore the entire central 5 x 5 x 5 cube is full of holes, a blatant
contradiction. O




