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Bricks
Kira Bhana and Tony Forbes
Given a supply of 1× 2× 6 bricks, try packing 42 of them into an 8× 8× 8
cube, a task which should not give you too much trouble. Or maybe you
can pack 28 of these things into a 7×7×7 cube—or prove that it cannot be
done. More generally, what we are really after is the answer to the question:

What is the maximum number of 1 × 2 × 6 bricks that you can
pack into an n× n× n cube, n = 4, 5, 6, . . . ?

In the table we give some upper and lower bounds. Observe that when n is
even the maximum packing number is determined exactly—the upper and
lower bounds are the same.

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

bn3/12c 5 10 18 28 42 60 83 110 144 183 228 281 341 409 486 571
unused 4 5 0 7 8 9 4 11 0 1 8 3 4 5 0 7

upper bound 0 2 18 28 42 60 82 110 144 183 228 280 340 409 486 571
unused 64 101 0 7 8 9 16 11 0 1 8 15 16 5 0 7

lower bound 0 2 18 27 42 57 82 108 144 180 228 276 340 405 486 567
unused 64 101 0 19 8 45 16 35 0 37 8 63 16 53 0 55

The ‘unused’ lines indicate how many holes are left unfilled by the possibly
hypothetical packing. The lower bounds are obtained as follows.

n = 6k Left for the reader.

n = 6k+2 Lay 3k2 +2k bricks flat on an n×n square to leave a 2×2
hole in a corner. Pile n of these structures vertically and drop 2k bricks
into the 2× 2× n hole:

n(3k2 + 2k) + 2k =
n3 − 8

12
=

⌊
n3

12

⌋
bricks,

best possible.

n = 4 Left for the reader.

n = 6k+ 4 ≥ 10 Lay 8k bricks flat to make a wall 4 units thick that
encloses an (n−8)× (n−8) square region. If n > 10, apply the first part of
the 6(k− 1) + 2 construction to the region. Thus an n×n square is covered
except for a 2 × 2 hole. Pile n of these structures vertically and drop 2k
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bricks into the 2× 2× n hole:

n(n2 − 4)

12
+ 2k =

n3 − 16

12
=

⌊
n3

12

⌋
− 1 bricks,

leaving a volume of 16 unoccupied.

Since 16 exceeds the volume of a brick by 4, it is tempting to suggest
that perhaps there is some smart arrangement which accommodates one
extra. However, no such packing exists; bn3/12c − 1 is best possible, as we
shall prove in Theorem 1, below.

n = 5 See Problem 315.1 on page 10.

Odd n ≥ 7 Take the arrangement for the (n−1)×(n−1)×(n−1) cube
and clad three mutually orthogonal faces with as many bricks as possible.
Thus, for example, 18 + 3 · 3 = 27 for n = 7, and 42 + 3 · 5 = 57 for n = 9.

In some cases we can improve on this construction.

n = 11 Use 20 bricks to build a wall 2 units high and 5 units thick
that encloses a 1× 1× 2 hole. Pile five of these structures vertically and lay
eight bricks on top: 5 · 20 + 8 = 108 bricks.

n = 15 See Theorem 2, below.

n = 17 Use 40 bricks to build a wall 2 units high and 5 units thick
that encloses a 7× 7× 2 hole into which place eight more bricks. Pile eight
of these structures vertically and lay 21 bricks on top: 8 · 48 + 21 = 405
bricks.

The reader is invited to reduce the gaps between the lower and upper
bounds given for odd n in the table.

Also, we would be very interested in the smallest k for which you can
put 18k3 + 9k2 + 1 bricks in a (6k+ 1)× (6k+ 1)× (6k+ 1) cube. To show
that this is a sensible request, put k = 10, say. The construction described
above involving the cladding of three faces of a 60×60×60 cube uses 18900
bricks and leaves an unused volume of 181, quite a lot more than sufficient
for one extra brick.

If it helps, there is a child’s toy marketed under the name Tumbling
Tower that consists of fifty-four 1 × 2 × 6 bricks neatly fashioned out of
wood and packaged in a 6× 6× 18 cardboard and plastic box. Although we
suspect its intended purpose is not to investigate the filling of cubical bins
with small cuboids, we did actually find it useful.

Finally, we have the following results, which show that the trivial upper
bound cannot be attained for n ≡ 4 (mod 6) and n ≡ 3 (mod 12).
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Theorem 1 Let k be a positive integer and let n = 6k + 4. The maximum
number of 1 × 2 × 6 bricks that you can pack into an n × n × n cube is
bn3/12c − 1.

Proof We have already shown how to pack the n × n × n cube with
bn3/12c − 1 bricks. So we only need to prove that bn3/12c is impossible.

We think it is safe to assume that a brick in the packing must be ori-
entated so that each of its six faces lies on one of the 3(n + 1) grid-planes
that partition the cube into n3 subcubes.

The proof involves polynomials in three complex variables. It might be
helpful to follow the argument with n = 10.

Let the cube occupy [0, n] × [0, n] × [0, n] in Euclidean 3-dimensional
space, and suppose it is packed with bn3/12c bricks to leave four of its
subcubes unoccupied. The location of a compact set of points S is the
(a, b, c) ∈ S that minimizes each of the coordinates a, b and c.

Associate a subcube located at (a, b, c) with the polynomial xaybzc,
where x, y and z are complex variables. Then the sum of the n3 polynomials
associated with the n3 subcubes is

C(x, y, z) =

n−1∑
a=0

n−1∑
b=0

n−1∑
c=0

xaybzc.

A brick located at (a, b, c) is represented by a polynomial

xaybzcBj(x, y, z),

where Bj(x, y, z), j ∈ {1, 2, . . . , 6} is one of

B1(x, y, z) = (1 + x+ x2 + x3 + x4 + x5)(1 + y),

B2(x, y, z) = (1 + x+ x2 + x3 + x4 + x5)(1 + z),

B3(x, y, z) = (1 + y + y2 + y3 + y4 + y5)(1 + x),

B4(x, y, z) = (1 + y + y2 + y3 + y4 + y5)(1 + z),

B5(x, y, z) = (1 + z + z2 + z3 + z4 + z5)(1 + x),

B6(x, y, z) = (1 + z + z2 + z3 + z4 + z5)(1 + y),

depending on the orientation of the brick in the cube. For example,
B6(x, y, z) corresponds to a brick standing upright with its side of length 2
in the direction of the y-axis. The polynomial represents the 12 subcubes oc-
cupied by the brick, on the assumption that it is located at (0, 0, 0). Shifting
the brick to (a, b, c) corresponds to multiplying B6(x, y, z) by xaybzc.
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The sum of the polynomials associated with the bricks in the packing is

B(x, y, z) =

6∑
j=1

Pj(x, y, z)Bj(x, y, z)

for some polynomials P1(x, y, z), P2(x, y, z), . . . , P6(x, y, z). Thus B(x, y, z)
is the sum of bn3/12c expressions of the form xaybzcBj(x, y, z) for various
(a, b, c) and various j ∈ {1, 2, . . . , 6}.

But there are also four points corresponding to the unused subcubes.
Assuming they occur at distinct locations

(a1, b1, c1), (a2, b2, c2), (a3, b3, c3), (a4, b4, c4),

the sum of their associated polynomials is

U(x, y, z) =

4∑
h=1

xahybhzch .

Note that U(x, y, z) depends on the parameters ah, bh, ch.

For the assumed packing, there must exist polynomials P1(x, y, z),
P2(x, y, z), . . . , P6(x, y, z) and point coordinates ah, bh, ch ∈ {0, 1, . . . , n −
1}, h = 1, 2, 3, 4, such that

C(x, y, z) = B(x, y, z) + U(x, y, z) for all complex x, y, z. (1)

Now for the clever part. Put

x = y = z = ρ =
1

2
+

√
3 i

2
,

a primitive 6th root of 1. Then, observing that 1+ρ+ρ2 +ρ3 +ρ4 +ρ5 = 0,
we have

C(ρ, ρ, ρ) =

n−1∑
a=0

n−1∑
b=0

n−1∑
c=0

ρaρbρc =
(
1 + ρ+ ρ2 + · · ·+ ρn−1

)3
=
(
1 + ρ+ ρ2 + ρ3

)3
= − 3

√
3 i

and
B(ρ, ρ, ρ) = 0 for every choice of the polynomials Pj .
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We have annihilated the bricks—so we do not have to worry about where
they are. To deal with the unused part, we see that

U(ρ, ρ, ρ) =

4∑
h=1

ρahρbhρch

is the sum of four powers of ρ and therefore cannot have absolute value
greater than 4. However |C(ρ, ρ, ρ)| = 3

√
3 > 5. Hence for any choice of

(ah, bh, ch), h = 1, 2, 3, 4, we have U(ρ, ρ, ρ) 6= C(ρ, ρ, ρ) and, recalling that
B(ρ, ρ, ρ) = 0,

C(ρ, ρ, ρ) 6= B(ρ, ρ, ρ) + U(ρ, ρ, ρ),

contradicting (1). �

Theorem 2 Let k be a positive integer and let n = 12k + 3. You cannot
pack bn3/12c 1× 2× 6 bricks into an n× n× n cube.

Proof Assume the cube occupies [0, n]× [0, n]× [0, n] and it is packed with
bn3/12c bricks to leave three of its subcubes unoccupied.

We employ the same method as in Theorem 1. With C(x, y, z),
B(x, y, z) and U(x, y, z) defined as before,

C(ρ, ρ, ρ) =

n−1∑
a=0

n−1∑
b=0

n−1∑
c=0

ρaρbρc

=
(
1 + ρ+ ρ2 + · · ·+ ρ12k+2

)3
=
(
1 + ρ+ ρ2

)3
= − 8,

B(ρ, ρ, ρ) = 0,

U(ρ, ρ, ρ) =

3∑
h=1

ρahρbhρch ,

where ρ = 1/2 +
√

3 i/2 and each of ah, bh, ch, h = 1, 2, 3, can take any
value in {0, 1, . . . , n− 1}. But for any choice of these parameters,

|U(ρ, ρ, ρ)| ≤ 3 < 8 = |C(ρ, ρ, ρ)|.

Hence
C(ρ, ρ, ρ) 6= B(ρ, ρ, ρ) + U(ρ, ρ, ρ)

and therefore the packing does not exist. �
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Solution 312.6 – 53 bricks
You cannot fit 54 1 × 1 × 4 bricks into a 6 × 6 × 6 box. If you
can devise a simple proof, we would like to see it. What about
53 bricks?

Tony Forbes
We show that you cannot pack 53 bricks into a 6 × 6 × 6 cube. There is
actually an easy way to prove this by partitioning the cube into 27 coloured
2×2×2 subcubes. However, in my opinion the somewhat more complicated
proof I offer, which is similar to that of Theorem 1 on page 3, is far too
interesting to be ignored. We might as well deal with the general case where
the cube has side congruent to 2 modulo 4.

Theorem 1 You cannot pack (4m+ 2)3/4− 1 bricks of size 1× 1× 4 into
a (4m+ 2)× (4m+ 2)× (4m+ 2) cube.

Proof Position the cube to occupy [0, 4m+ 2]× [0, 4m+ 2]× [0, 4m+ 2] in
Euclidean 3-dimensional space. Suppose (4m+ 2)3/4− 1 bricks are packed
in the cube to leave 4 units unoccupied.

A point (a, b, c) is represented by the monomial expression xaybzc in
variables x, y, z, The whole cube is represented by the polynomial

C(x, y, z) =

4m+1∑
a=0

4m+1∑
b=0

4m+1∑
c=0

xaybzc.

A brick polynomial is one of

B1(x, y, z) = 1 + x+ x2 + x3,

B2(x, y, z) = 1 + y + y2 + y3,

B3(x, y, z) = 1 + z + z2 + z3,

depending on its orientation. The bricks in the packing are represented by

B(x, y, z) =

3∑
r=1

Pr(x, y, z)Br(x, y, z),

where P1(x, y, z), P2(x, y, z) and P3(x, y, z) are polynomials. The polyno-
mial representing the holes at (ah, bh, ch), h = 1, 2, 3, 4, is

U(x, y, z) =

4∑
h=1

xahybhzch .
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For the supposed packing, there must exist polynomials Pr(x, y, z), r ∈ {1,
2, 3}, and point coordinates ah, bh, ch ∈ {0, 1, . . . , 4m + 1}, h = 1, 2, 3, 4,
such that

C(x, y, z) = B(x, y, z) + U(x, y, z) for all x, y, z ∈ H, (1)

where H is the ring of quaternions.

We represent a quaternion by an expression of the form α+βi+γj+δk,
where α, β, γ, δ are real numbers and i, j and k are the basis elements.
Addition is performed by doing each component separately:

α1+β1i+ γ1j + δ1k + α2 + β2i+ γ2j + δ2k

= (α1 + α2) + (β1 + β2)i+ (γ1 + γ2)j + (δ1 + δ2)k.

Multiplication is done in the usual way,

(α1 + β1i+γ1j + δ1k)(α2 + β2i+ γ2j + δ2k)

= α1α2 + α1β2i+ α1γ2j + α1δ2k

+ β1α2i+ β1β2ii+ β1γ2ij + β1δ2ik

+ γ1α2j + γ1β2ji+ γ1γ2jj + γ1δ2jk

+ δ1α2k + δ1β2ki+ δ1γ2kj + δ1δ2kk,

which is then simplified by Table 1. Using Table 1, we see that B1(i, j, k) =
B2(i, j, k) = B3(i, j, k) = 0 and therefore

B(i, j, k) = 0. (2)

Also

C(i, j, k) =

4m+1∑
a=0

4m+1∑
b=0

4m+1∑
c=0

iajbkc

= (1 + i)(1 + j)(1 + k) = (1 + i+ j + k)(1 + k)

= 1 + i+ j + k + k − j + i− 1 = 2i+ 2k. (3)

Table 1: Quaternion multiplication

× 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1
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Table 2: Hole coordinates

a mod 2 0 0 0 0 1 1 1 1
b mod 2 0 0 1 1 0 0 1 1
c mod 2 0 1 0 1 0 1 0 1

iajbkc ±1 ±k ±j ±i ±i ±j ±k ±1

Now consider the holes. We have

U(i, j, k) =

4∑
h=1

iahjbhkch .

Apart from a plus or minus sign, iajbkc depends only on the parities of the
coordinates (a, b, c) as indicated in Table 2, which clearly shows that each
term of U(i, j, k) must be one of the eight elements of the set

R = {1,−1, i,−i, j,−j, k,−k}.

For (1) to be satisfied, we must have

U(i, j, k) = 2i+ 2k. (4)

by (2) and (3). The only way to make this quantity from four elements of
R, is i+ i+ k + k, and we may assume without loss of generality that

ia1jb1kc1 = ia2jb2kc2 = i, ia3jb3kc3 = ia4jb4kc4 = k.

Therefore

(a1, b1, c1), (a2, b2, c2) ≡ (0, 1, 1) or (1, 0, 0) (mod 2),

(a3, b3, c3), (a4, b4, c4) ≡ (0, 0, 1) or (1, 1, 0) (mod 2).

Now remove the bricks, reflect them in the plane x = y and return them to
the cube. The hole that previously occupied position (ah, bh, ch) is now at
(bh, ah, ch), h = 1, 2, 3, 4. But then

(b1, a1, c1), (b2, a2, c2) ≡ (0, 1, 0) or (1, 0, 1) (mod 2),

(b3, a3, c3), (b4, a4, c4) ≡ (0, 0, 1) or (1, 1, 0) (mod 2),

and it follows that

ib1ja1kc1 = ±j, ib2ja2kc2 = ±j, ib3ja3kc3 = ±k, ib4ja4kc1 = ±k,

which contradicts (4). �
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What makes this proof work seems to be the non-symmetry of (3) under
permutations of i, j and k. For instance, putting x = j and y = i gives

C(j, i, k) = (1 + j)(1 + i)(1 + k) = (1 + i+ j − k)(1 + k) = 2 + 2i,

and again we can get a contradiction by a suitable transformation of the
bricks.

As can be seen from the results summarized in the table below, for
the general problem of finding optimal packings of 1 × 1 × 4 bricks in n-
sided cubes, the only case where the trivial upper bound is not attained is
n ≡ 2 (mod 4).

Cube side, n Maximum number of bricks Holes

n = 0, 1, 2, 3 0 n3

n ≡ 0 (mod 4), n ≥ 4 n3/4 0
n ≡ 1 (mod 4), n ≥ 5 bn3/4c 1
n ≡ 2 (mod 4) n3/4− 2 8
n ≡ 3 (mod 4), n ≥ 7 bn3/4c 3
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Problem 315.1 – Rectangles in a square
Tony Forbes
How many 1× (n+ 1) rectangles can you fit in an n× n square?

Obviously fitting any at all might be a bit difficult when n = 1 or 2.
But as n increases the difference between n and

√
2n becomes more and

more significant. There is I think a crossover point at

n =
2√

2− 1
= 4.8284,

where you can just squeeze in one (n+ 1)× 1 rectangle along the diagonal.

Problem 315.4 – Cylinder in a cube
What is the largest r such that a cylinder of radius r and length 6 will fit
in a cube of side 5?

Obviously this is one of an infinite number of similar problems. I (TF)
stumbled upon this particular instance while I was doing something else. It
interested me because the answer seems to be 1.0 or thereabouts.
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Packing 1:2:6 bricks into cubes

Kira Bhana and Tony Forbes

Let M(n) denote the maximum number of 1 × 2 × 6 bricks that you can
pack into an n× n× n cube. In M500 315 we saw that

M(n) =

 n3/12 if n ≡ 0 (mod 6),
bn3/12c if n ≡ 2 (mod 6),
bn3/12c − 1 if n ≡ 4 (mod 6) and n ≥ 10,

but all we could manage for odd n ≥ 7 were non-equal upper and lower
bounds.

n 7 9 11 13 15 17 19 21

bn3/12c 28 60 110 183 281 409 571 771
unused 7 9 11 1 3 5 7 9

upper bound 28 60 110 183 280 409 571 771
unused 7 9 11 1 15 5 7 9

lower bound 27 57 108 180 276 405 567 765
unused 19 45 35 37 63 53 55 81

Here we report a small amount of progress. The case n = 7 is settled and
we have a slight improvement for n = 12k + 9.

Perhaps we should make it clear
that we are considering only situations
where the bricks are orientated so that
their faces lie on the grid-planes that di-
vide the n×n×n cube into n3 subcubes.
In other words, a brick must occupy ex-
actly 12 of the 1× 1 × 1 subcubes into
which the n × n × n cube is naturally
divided. Let us call these regular pack-
ings.

Obviously non-regular packings do
exist. For example, there is a certain
amount of flexibility with the position-
ing of some of the 27 bricks in the
7 × 7 × 7 cube shown on the right. However, in all cases we have looked
at it is possible to make a non-regular packing regular. Anyway, we shall
redefine M(n) to be the maximum possible number of 1× 2× 6 bricks in a
regular packing of an n× n× n cube.
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Theorem 1 If n ≡ 9 (mod 12), then M(n) ≤ bn3/12c − 1.

Proof Suppose n ≡ 9 (mod 12) and let the cube occupy

[0, n]× [0, n]× [0, n]

in Euclidean 3-dimensional space. Suppose it is packed with bn3/12c =
(n3 − 9)/12 1× 2× 6 bricks to leave 9 of its subcubes unoccupied.

The proof is the same as that of Theorem 1 on page 3 of M500 315 except
that the ring is different. We represent a point (a, b, c) by the monomial
xaybzc. Then the collection of n3 subcubes is represented by

C =

n−1∑
a=0

n−1∑
b=0

n−1∑
c=0

xaybzc,

a brick located at (a, b, c) is represented by a polynomial

B = xaybzcBj(x, y, z), j ∈ {1, 2, . . . , 6},

where

B1 = (1 + x+ · · ·+ x5)(1 + y), B2 = (1 + x+ · · ·+ x5)(1 + z),

B3 = (1 + y + · · ·+ y5)(1 + x), B4 = (1 + y + · · ·+ y5)(1 + z),

B5 = (1 + z + · · ·+ z5)(1 + x), B6 = (1 + z + · · ·+ z5)(1 + y),

and the holes at locations (ah, bh, ch), h = 1, 2, . . . , 9 are represented by

U =

9∑
h=1

xahybhzch .

In the rest of the proof we work in Z365, the ring of integers modulo 365.
Put x = y = z = 9. The powers of 9 are 1, 9, 81, 364, 356, 284. Also 96 = 1
and

1 + 9 + 92 + 93 + 94 + 95 = 0.

Then

C =
(
1 + 9 + 92 + · · ·+ 9n−1

)3
= (1 + 9 + 81)

3
= 211,

B = 0,
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and for the packing to exist we must have C = B + U . Hence

U = 211 for some ah, bh, ch ∈ {0, 1, . . . , n− 1}, h = 1, 2, . . . , 9. (1)

But U is a sum of 9 powers of 9, and a straightforward computation shows
that no such sum is equal to 211, contradicting (1). �

We don’t know if the number 365 = 5× 73 has any special significance.
It was found simply by looking for it.

There are 25 numbers modulo 365 that are not representable as sums
of 9 powers of 9, namely

0, 2, 8, 10, 18, 64, 72, 74, 80, 82, 90, 154, 162,

203, 211, 275, 283, 285, 291, 293, 301, 347, 355, 357, 363,

which occur as 0 and twelve ± pairs. Fortunately for our proof the list
includes 211. One could argue that our probability of success is 25/365 =
0.068, which is rather small. So we cannot help thinking that something
other than coincidence is at work.

We turn now to n = 7. A slice of the 7 × 7 × 7 cube is a subset in the
form of a 1× 7× 7 cuboid that may be orientated in any of the three axis
directions. A slice is internal if neither of its 7×7 faces is adjacent to a cube
face. It is clear that there are 21 distinct slices of which 15 are internal.

Lemma 1 Suppose there is a regular packing of 28 1 × 2 × 6 bricks in a
7 × 7 × 7 cube. Then each of the 15 internal slices of the cube contains
exactly one hole.
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Proof Assume the packing of 28 bricks exists and let T be the union of
three distinct parallel internal slices. The picture on page 2 shows a possible
arrangement.

A brick laid with its long axis parallel to the slices occupies 12, 6 or
0 subcubes of T . A brick laid orthogonal to the slices spans all three and
occupies 6 subcubes of T . These are the only possibilities.

Let br denote the number of bricks that occupy r subcubes of T , and
let u be the number of holes in T . Since T consists of 147 subcubes we have

12 b12 + 6 b6 = 147− u, 0 ≤ u ≤ 7,

and therefore u = 3.

Denote the slices of T by T1, T2, T3, and let T4, T5 be the other two
internal slices parallel to those of T .

Suppose one slice, which we may assume is T1, contains more than
one hole. Then the previous argument with T1, T4 and T5 implies T4 ∪ T5
contains at most one hole. But then T2∪T4∪T5 contains at most two holes,
a contradiction by the same argument with T2, T4 and T5.

Hence there must be exactly one hole in each of T1, T2, . . . , T5. Similarly
for other ten internal slices. �

Theorem 2 Any regular packing of 1× 2× 6 bricks in a 7× 7× 7 cube has
at most 27 bricks.

Proof Take the obvious packing of eighteen 1× 2× 6 bricks in a 6× 6× 6
cube and attach three bricks to each of three mutually orthogonal faces to
get a packing of 27 bricks, as illustrated on page 0. Thus M(7) ≥ 27.

Assume the cube is packed with 28 bricks, and recall that the packing
leaves 7 holes. Let U be the union of three mutually orthogonal internal
slices. Then U consist of 127 subcubes with a single subcube at the intersec-
tion of the three slices. The picture on page 4 shows a possible arrangement.

Depending on how it is laid, a brick must occupy 12, 7 or 2 subcubes
of U . Let br denote the number of bricks that occupy r subcubes of U , and
let u be the number of holes in U . Then

12 b12 + 7 b7 + 2 b2 = 127− u,
b12 + b7 + b2 = 28.

Multiplying the second equality by 7 and subtracting gives

−5 b12 + 5 b2 = 69 + u, which implies u = 1 or 6.
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But u ≤ 3 follows from Lemma 1. Therefore u = 1 and, again by Lemma 1,
the hole must occur at the intersection of the three slices. However, each of
the three slices making up U could have been any of five parallel internal
slices. Therefore the entire central 5× 5× 5 cube is full of holes, a blatant
contradiction. �


