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Pythagoras’ theorem revisited

Tony Forbes

Students Calcea Johnson and Ne'Kiya Jackson of St Mary’s Academy in
New Orleans have generated a certain amount of excitement amongst the
mathematical community by proving Pythagoras’ theorem in a new and
interesting manner. See Leila Sloman’s article of 10 April 2023 in Scientific
American, which is available at
https://www.scientificamerican.com/article/2-high-school- |
students-prove-pythagorean-theorem-heres-what-that-means/|
Unfortunately no details of the proof were given.

At a London South Bank University Maths Study Group meeting in
April 2023 we were shown a video claiming to explain how the two stu-
dents might have proved the theorem. However, I found the long-winded
presentation rather tedious and the temptation to get some sleep became
almost irresistible. Nevertheless I managed to salvage the main features of
the lecturer’s diagram from which a proof is quite easy to concoct.

Here is a proof based on the first picture on the next page. I do not
know if this is actually how the students did it. All the relevant triangles
are similar, and it helps if b6 > a. We have

2ca 2a? 2ca?
|B1Bs| = 0 |D1Bs| = 0 |D1Ds| = 2

2ca? 2a* 2¢ca
‘BZB3| = 3 |D2B3\ = B |D2D3‘ = T

Hence

2ca e [a2\" 2abc
BE| = — — =
| 1 | b 7;:'(()2) bg_a27

= [a?\" 2a%c
|AE| = c+2cz 2 = chm.

n=1

Observe that ABy F is an arbitrary right-angled triangle. Its hypotenuse is
AFE, and

2a%¢ \2 2abc \ 2
|AE|]” — |B{E]* = <C+b2—a2> - <b2_a2) = & = |AB %

QED


https://www.scientificamerican.com/article/2-high-school-students-prove-pythagorean-theorem-heres-what-that-means/
https://www.scientificamerican.com/article/2-high-school-students-prove-pythagorean-theorem-heres-what-that-means/
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A simple proof, you will agree. However, Graham Lovegrove re-
minded the LSBU Maths Study Group of an even simpler proof, also based
on triangles and the similarity thereof. Look at the next diagram ...

A
C
b
a
B C D

. in which angles ACB and BAD are 90°. Clearly,
cb b2 c?

AD| = £, |cD| = =, |BD| = S|AD| = &,
a a b a

and hence ¢?/a = a + b?/a.
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Inspired by Sloman’s article and the debates regarding the use or other-
wise of trigonometry in Johnson & Jackson’s argument, I thought I would
have a go at proving Pythagoras’ theorem in its most fundamental form. No
diagram, no triangles, no trigonometry, and no funny stuff involving /—1.

Theorem 1 (Pythagoras) We have

0 x2k 2 0 x2k+l 2
(Z(_l)k(%)!> +<Z(_1)k(2k+1)!> =L

k=0 k=0

Proof It is not too difficult to show that for positive integer n,

n $2k 2 n x2k+1 2

k=0 =0

is a polynomial in x of the form

P’Vl (.13) = a2n+2x2n+2 + a2n+4372n+4 + -+ Cl4n+21‘4n+2’ (1)
where
2k
lak| < Pk k=2n+2,2n+4, ..., 4n+ 2.

Hence for any z, P,(x) — 0 as n — oco. The theorem follows.

For completeness, we now address in detail the ‘not too difficult’ part
of the proof. Let

n I2k
C% = (_1)k )
kZ:O (2k)!
n 2k+1
= U
Sn kzzo( ) (2k+ 1)V

where n is a positive integer. Then

p25+2k p20+2k+2
st = YN j*’“( CTTRRCY >
2)1(2k)! " (2 + D)I(2k + 1)

=0 k=0

Putr=%k+j:

n_nty 2r 2r42
cest = 25 (g : .
" )N (2r — 2j)! (2j+1)!(2r—2j—|—1)!

j=0r=j
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Reverse the order of summation. Then r goes from 0 to 2n, and we split
its range into [0,n] and [n + 1,2n]. Observe that j goes from 0 to r when
r <n and from r —n to n when » > n + 1. Thus we have

C?+ 8% = X| + X,

where
n 2r T ) 2r4-2 T ) 2
%= Y (G () e (i) )
r=0 " j=0 J " " j=0 J
2n 2r n 2742 n
€T 2r X 2r + 2
Xy = 1 = A
= Yo 2 G) e 2 (i)

Consider X;. The two binomial sums can be evaluated:
i 2ry 1 when r = 0,
£\25) — 2" !  otherwise,

"2+ 2 _ g2t
“\2j+1) '

Therefore

27‘22r—1 n x2r+2227‘+1

o ”Z(‘”TQCW+Z(‘”T N

2$ 2r (2$)2T+2
=1
+a’ +Z ( 2r)! +(27’+2)!

In this beautiful formula the last sum collapses into —22 (which cancels the
2?) and a term involving %" *2:

(1" (202

X, =1 o)
N )]

When we add X» to X; we do indeed get a polynomial of the form (1):

()" (a2
2 (2n+2)!

27" n 2r+2 n
2r x 2r +2
+ Z )] > <2j> Tt jz;n <2j + 1)

r=n+1 j=r—m

C2482-1 =
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On gathering expressions involving the same power of x, we have

2n+2 2n+2 n
9 9 _ n T 2 2n+2
CotSu—1 = (=1 2n+2)! | 2 Z(

N 2 S4n 42
(An+2)!1\2n+1

Y G Z@)- ) (2;:—1)

r=n-+2 j=r—m j=r—1—-n

J=1

Next, observe that

j=1
Therefore
2 2n-+2 4An+2 4 )
C2r82-1 = (-1 224" .
2n+2)!  (An+2)!\2n+1
)" 2" " 2r " 2r
P s (s ()
r=n+2 j=r—m 2‘7 j=r—1—-n 2‘]+1

dn + 2\ | .
But (2 N 1) is less than or equal to 24”12, Moreover, the two inner sums
n

2r
involve distinct binomial coeflicients of the form < ) and so when taken
s

together they sum to something bounded by £22". Hence the coefficient of
Fin C2 452 — 1is zero unless k € {2n+2, 2n+4, ..., 4n+ 2} in which
case it is bounded by +2% /k!. O

If we want to avoid all those rather complicated and somewhat messy
power series manipulations, there is an interesting alternative and much
simpler argument. However, we have to assume some familiarity with high-
school calculus, which might be considered an excessive demand for what
should be a ‘pure’ proof of the Pythagorean theorem.

To emphasize the dependence of the sums on a variable, let us write

e 2k > 1‘2k+1

C(z) = Z(_l)k(%)!’ Ste) = Z(_l)km'

k=0
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Lemma 1 We have

a4

— (C*@)+5*@) = o

Proof On differentiating term by term we obtain

dC(z) 2k 2kt x
dr ;(_l)kw - ;(—l)k(zk—m
0o L gl
and
dS(x > 2k + 1)x2k > a2k
di:) - g(_l)k(@l;:—)l)! - I;)(_l)k(%)! = Cla).
Hence %(02(:¢)+52<x>) = —20(2)S(z) + 25(z)C(z) = 0.

Lemma 1.

o0

]

It is clear that C2(0) + S?(0) = 1. Therefore Theorem 1 follows from
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Pythagoras’ theorem revisited again

Tony Forbes

My proof of the Pythagorean theorem in M500 313 has been the subject
of a certain amount criticism from various people to whom I have shown it.
Leaving aside any questioning of the author’s sanity, the main discussion
was centered on my sledgehammer approach to the solution of a standard
problem in high-school Euclidean geometry. Spread over three pages (albeit
A5 ones) it is far too long-winded.

The power-series proof in M500 313, which involves computing (1) and
then letting n tend to infinity, can be done much more easily by dealing
directly with infinite sums. However, I claim that my proof is of some
interest (at least to me). It avoids tortuous geometric reasoning involving
such lofty concepts as ‘angles’, ‘straight lines’ and the relations between
them. And since there isn’t one, we don’t have to worry about our diagram
truly representing the general case.

I was quite keen to see exactly what happens when you compute the
finite sum

n $2k 2 n $2k+1 2
(kz_o(_l)k(zk)!> +<kz_0(_1)k(2k+l)!> : (1)

For instance, when n = 4 you get

131681894400 + 72576210 — 3024022 + 216024 — 63216 + 218
131681894400 ’

and you can plainly see that this is nearly equal to 1 when |z| is not too
large. What has happened is that all the small positive powers of x have
disappeared. For general n, as explained in M500 313, the non-constant
part of the polynomial looks like this,

x2n+4 + 4n-|—27

2n+2
A2n+22""T" 4 G2nya C - Qango®

with the aj, bounded by £2*/k!. Thus we are assured of rapid convergence
to zero for any . Just make n go to co.

For the critics, I offer the suggested alternative proof of the theorem.
Like the one in M500 313, there is no mention of triangles or trigonometry.
‘We achieve considerable simplicity because we avoid the complicated details
associated with manipulating finite sums. However, the simplicity is an
illusion. We are not bothering to answer thorny questions concerning the
convergence of any infinite power series that appears in our argument.
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Theorem 1 (Pythagoras) We have

k=0
Proof Let
e i 1.2](5 x 2k+1
Then
) B 0 o0 ~ 2j+2k
Put r=k+j:

2r 0 , q;2r " 27“
ZZ —Qj); = 2.1 (@)1 2= (2j)'

r=0 j=0 r=0

The binomial sum can be evaluated: it is 1 when r = 0 and 22"~! when
r > 1. Hence

227’ 1+C(2
Cz) = 14+ Z DT *2(@. 2)

Similarly,

) > T i, p2r+2
$*(x) = > 3 (1) (27 + D)l(2r —2j + 1)!

- . Tt S 2r + 2
2_:(—1) (2r+2)!j§_:o(2j+1>

1 L (22)7 21— C(22)
2 2.(=1) @r+2)! 2

since the binomial sum is 22"*! for 7 > 0. Combining with (2), we have

C*(x) + S%(x) = 1. O
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If we permit the use of ¢ = v/—1, the previous argument can be expressed
even more succinctly. Define

= gk
=D
k=0
and observe that
BwEe) = 23 58 = > L3y ()
r=0 ' j=0

§=0 k=0
o0

= S Sy = Bty 3)
r=0

Also one can easily verify the familiar identities
E(iz) = C(x)+iS(x), E(—iz) = C(x) —iS(z) (4)

by splitting the sum for E(4iz) into a part that does not explicitly involve
1 and a part that does.

Now the proof of Theorem 1 is extremely straightforward:

C*(z) + 5%(z) = (C(z)+iS(2))(C(z) —iS(z))
— E(iz)E(—iz) = E(0) = L.

By looking at the power series expressions, we see immediately that
E(0) = C(0) = 1, S(0) = 0. And I believe that E(1) ~ 2.71828 is an
important mathematical constant.

By computing its power series to sufficiently many terms we can verify
that S(x) has a zero in the vicinity of 22/7. So let us define a number,
which we shall call 7, by

S(x) =0, 314 < 7 < 3.15. (5)

This number has some interesting properties. Using Pythagoras’ theorem
we obtain C(7) = +£1, and by comparing with the value obtained from
directly computing the power series, C'(m) &~ —1.0, it is clear that we must
select the negative sign; thus C(w) = —1 exactly. Then, by making use of
(3) and (4), we have

E(ir) = —1, E(2im) = 1,
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E(x+2ir) = E(x)E(2ir) = E(x),
Cz+2m) = C(x), S(x+2m) = S(z).

Thus we have shown that C'(z) and S(x) are periodic with period 2. More-
over, it is not difficult to prove that whenever j is an integer

S(jn) = c(yw%) = 0,

C(2jm) = S(2j7r+g) -1,
C2jr+7) = S(ij—g) —

and, again with the help of (3) and Pythagoras’ theorem, we can obtain
values at other rational multiples of 7, such as

s(7) - o) - 7

4 4 2’

3

s(z)=c(§) =% s =G
5(G) - -5 eB) -2

The proofs are straightforward and left to the reader.

Finally, let us define yet another function by a power series:

o0 1/2 2k+1

D pr—
@ = X ()
3 xd 7 529 Tl 21213 11215

=r———-—— — — — — — -,

6 40 112 1152 2816 13312 10240

valid for —1 < 2 < 1 (the coefficient of 22+ is O(k~°/?); see Problem

314.3 on page 11). By computing the power series to sufficient accuracy,

you can verify that D(1) =~ 7/4. Moreover, you probably recognise D(x) as
xr

/ V1 —u?du, and so possibly one can argue that 4D(1) is the area of a

0
unit circle—whatever that might mean. So we offer an interesting problem
for you to solve.

Prove that 4D(1) = m, where 7 is defined by (5).
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Problem 314.3 — Binomial coefficient

Tony Forbes
Show that for large n,

(%) ~ s

The expression on the left is interpreted as

-G G

n!

)

i.e. half choose n, the number of ways to select n objects from half an object.




