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Triangles in polygons

Let P be a simple polygon on n vertices, 0, 1, . . . , n − 1, oriented
counterclockwise. We are interested in the areas of the triangles
formed by joining vertices of P to ‘opposite edges’.
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Signed areas

Denote by ∆ij the area of the triangle on polygon vertices i , j , j +1,
the numbering taken modulo n. This area is taken as positive or
negative according to whether i , j , j + 1, i has counterclockwise or
clockwise orientation relative to the orientation of the polygon.

Left we have
highlighted areas
∆0,1 = 2 and
∆2,3 = −7/2.

Note also ∆0,2 =
∆0,4 = 0.
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The Delta matrix

For an n-vertex polygon the ∆ij form an n × n matrix. The main
and 1st lower diagonals are zero. The 1st upper diagonal equals
the 2nd lower diagonal.
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Application 1: Finding bisecting chords in polygons
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Looking for bisecting chords

We are interested in the ∆i ,j , firstly because they help locate
bisecting chords in polygon P . Specifically, does the collection of
chords subtending edge [j , j + 1] from vertex i , denoted 〈i , j〉,
contain one which bisects the area of P?
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Tracing sub-polygons
Trace P+

i ,j by following chord [i , j] and then edges of P

counterclockwise to i . Denote its area by A+
i ,j .

Trace P−

i ,j by following chord [j , i ] and then edges of P

counterclockwise to to j . Denote its area by A−

i ,j .

Calculate ri ,j =
(

A+
i ,j − A−

i ,j

)

/2∆i ,j . A value in [0, 1] locates a

bisection point on edge [i , j].
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Looking for ‘bisecting’ ri ,j values
Our strategy is to take each polygon vertex in turn and test each
chord from that vertex in turn to identify which is bisecting.
Luckily we can calculate the rij values without ever having to
construct any of the auxiliary polynomials P+ and P−:

Proposition

1. Let P have area AP . For i = 0, . . . , n − 1 and
j = i + 1, . . . , i + n− 2,

ri ,j =







AP/2∆i ,j if j = i + 1 and ∆i ,j 6= 0
(ri ,j−1 − 1)∆i ,j−1/∆i ,j if j ≥ i + 2 and both ∆i ,j and

∆i ,j−1 are nonzero.

2. Suppose that ∆i ,j = 0 but that ∆i ,j−1 and ∆i ,j+1 are both
nonzero. Then

ri ,j+1 = (ri ,j−1 − 1)∆i ,j−1/∆i ,j+1.
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Application 2: Testing for bisection convexity

Robin Whitty A Matrix of Triangle Areas



Bisection convexity
Definition A polygon is called bisection-convex if any straight
line which bisects its area contains either exactly two points on the
boundary of the polygon, or contains one point on the boundary
and one edge of the polygon. If the latter case does not occur the
polygon is called strictly bisection-convex.
(Fechtor-Pradines, N., “Bisection envelopes”, Involve, Vol. 8, No. 2, 2015.)

(a) (b) (c)

Figure : (a) Strictly bisection-convex; (b) non-strictly bisection-convex;
(c) not bisection-convex
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Testing for bisection convexity

Proposition A polygon P is bisection convex if and only if no
bisecting chord originating at a vertex of P has a point exterior
to P .

Means we just have to check each vertex-opposite edge bisecting
chord to see if it intersects P elsewhere.
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Testing for bisection convexity using ∆i ,js
The text-book check for line intersection is invoked below: the vertices

are labelled with position vectors while r is the direction vector

corresponding to the bisecting chord at vi . The polygon edge joining

vertices x and y will intersect with the straight line passing through vi in

direction r if and only if x and y lie in different half-planes in relation to

this straight line. This occurs if and only if the two cross products

(−vi + x)× r and (−vi + y)× r have different signs. So the strategy is to

calculate the series of cross products (−vi + vi+k)× r, k = 1, . . . , n − 1

and look for sign changes.

Of course these are cross products
in the plane so they are effectively
scalars, (a, b)× (c , d) = ad − bc .
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Vector intersections via ∆ijs

Proposition Define the sequence Fi , i ≥ 0, by

F0 = 0 and, for k ≥ 1,Fk = Fk−1 +∆j ,i+k−1 −∆i ,i+k−1.

Then for k = 1, . . . , n − 1,

(−vi + vi+k)× r = 2ri ,j (∆i ,j −∆i+k,j) + 2Fk .
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Properties of the Delta matrix 1: Rank

Robin Whitty A Matrix of Triangle Areas



Easy properties of ∆(P) the matrix of ∆i ,js

1. The diagonal and 1st lower diagonal entries are zero.

2. The first upper diagonal is identical to the second lower
diagonal, the same triangle areas being subtended from
opposite directions. That is, for i = 0, 1, . . . , n − 1,
∆i ,i+1 = ∆i+2,i .

3. In row i the first and second upper diagonal entries sum to
same as the first and second lower diagonal entries in row
i + 3. That is ∆i ,i+1 +∆i ,i+2 = ∆i+3,i +∆i+3,i+1.



























0 8 0 1 6 0

0 0 4 −3 6 8

8 0 0 −1 0 8

4 4 0 0 3 4

8 2 −1 0 0 6

8 8 −4 3 0 0


























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Linear combinations of rows of ∆(P)

A 3× 3 diagonal block of ∆(P)
has the following form





0 x y

0 0 z

x 0 0





The Easy Properties extend this
to the row immediately beneath:









0 x y

0 0 z

x 0 0
x + y − z z 0









Suppose x 6= 0. Write α1 = z/x , α2 = −y/x , α3 = 1− α1 − α2.
Then this extension is the linear combination

Row 4 = α1 × Row 1 + α2 × Row 2 + α3 × Row 3

Surprisingly (to me) this same linear combination extends to the
remainder of this same row.
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Less immediate property of ∆(P)

The matrix ∆(P) is determined by its first three rows. Specifically,
∆(P) has rank 3.

By the easy properties, a diagonal
3×3 block determines the 3 entries
immediately below.

As we have seen, we can write
these 3 entries explicitly as a linear
combination of the rows above.

And this same linear combination
applies across the whole row.

Row 4 =
z

x
× Row 1−

y

x
× Row 2

+
x + y − z

x
× Row 3,

provided x 6= 0.
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A theorem about triangles

Suppose we have 6 points, A,B ,C ,D,X ,Y , arranged in
counterclockwise order in the plane. Using |ABC |, etc, to denote
the area of the triangle on the points indicated, we have

|ABC |×|XYD|+|ACD|×|XYB | = |BCD|×|XYA|+|ABD|×|XYC |.

In the special case where the four
triangles on base XY all had unit
area this would just equate two
ways of expressing the quadrilateral
area |ABCD|. In fact it remains
true in general.
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Applying the triangles theorem to the ∆i ,js
Without loss of generality take A,B ,C ,D to be the first four
vertices, 0, 1, 2, 3, of polygon P . The triangle theorem becomes

∆0,1 × |XY 3|+∆0,2 × |XY 1| = ∆1,2 × |XY 0|+∆3,0 × |XY 2|.

Further, taking X ,Y to be a subsequent edge [k , k + 1] of P , this
becomes

∆0,1 ×∆3,k +∆0,2 ×∆1,k = ∆1,2 ×∆0,k +∆3,0 ×∆2,k .

0 ∆0,1 ∆0,2 · · · ∆0,k · · ·

0 0 ∆1,2 · · · ∆1,k · · ·

∆0,1 0 0 · · · ∆2,k · · ·

∆0,1 +∆0,2 −∆1,2 ∆1,2 0 · · · ∆3,k · · ·

Rearranging, provided that ∆0,1 6= 0,

∆3,k = α1∆0,k + α2∆1,k + α3∆2,k ,

with the αi as on the earlier slide.
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Dealing with zero-area ∆i ,js

If three consecutive polygon ver-
tices are collinear then we have a
zero area triangle.

E.g. here ∆0,1 = 0 in the applica-
tion of the triangle theorem, so we
cannot write ∆3,k in terms of the
three previous rows of the matrix.

∆0,1 ×∆3,k +∆0,2 ×∆1,k = ∆1,2 ×∆0,k +∆3,0 ×∆2,k .

In fact, these three previous rows are found to be already linearly
dependent:

0 = −∆0,2 ×∆1,k +∆1,2 ×∆0,k +∆3,0 ×∆2,k .
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Zero-area ∆0,1: example

∆0,1 = 0 and so

∆1,2×∆0,k−∆0,2×∆1,k+∆3,0×∆2,k = 0,

or

2×∆0,k −5×∆1,k +3×∆2,k = 0.

Thus, k = 3:

2× 4− 5×
5

2
+ 3×

3

2
= 0.

k = 4:

2× 0− 5×
9

2
+ 3×

15

2
= 0.
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Properties of the Delta matrix 2: Eigenvectors
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Eigenvalues and eigenvectors
A complex number λ is an eigenvalue of square matrix X if, for
some complex row vector v ,

vX = λv v is a left eigenvector

XvT = λvT vT is a right eigenvector

E.g. X =





1 2 3
2 3 4

−2 −2 −2





Eigenvalues are 0 and 1± 2i .

Right eigenvectors are





1
−2
1



 ,





(−1 + i)/2
(−2 + i)/2

1



 ,





(−1− i)/2
(−2− i)/2

1



 .
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A right eigenvector of ∆
If all rows of a square matrix X have the same sum s then s is an
eigenvalue of X and the all-ones column vector is a right
eigenvector.

X







1
...
1






=







s
...
s






= s







1
...
1






.

In the matrix ∆(P) for a polygon P , the i -th row sum is
∆i ,i+1 + . . .+∆i ,i+n−2 (indexing modulo n). This sums a
collection of triangles which partition the interior of P . Therefore
all rows of ∆(P) sum to AP , the area of the polygon.
(This is not quite obvious, unless P is convex, because some of the

triangles may lie partially outside the boundary of P . That the overall

sum is AP is the content of the Shoelace Formula for polygon area.)

Thus Ap is an eigenvalue of ∆(P) with corresponding right
eigenvector the all-ones vector.
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Some left eigenvectors of ∆

Suppose rows i , . . . i + k of a square matrix X are linearly
dependent. This is the same as saying that summing these rows
with the appropriate weights, say, α1, . . . αk , will give the zero
vector.

Then multiplying X on the left by the row vector
v = (0, . . . , 0, α1, . . . , αk , 0, . . . , 0) will give a row of zeros. That
is, vX = 0× v , so v is a left eigenvector corresponding to an
eigenvalue of zero.

We have seen that ∆(P), for an n-vertex polygon P , has n − 3
such dependencies. So zero is an eigenvalue of ∆ of multiplicity
n − 3. We can construct the corresponding left eigenvectors as
shown earlier, making n − 3 applications of the triangle theorem.
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The characteristic polynomial of ∆

The eigenvalues of an n× n matrix X are precisely the roots of the
degree-n polynomial in λ defined as c(X , λ) = det(X − λI ). This
is the characteristic polynomial of X .

From the previous slides we know we can almost write down
c(∆(P), λ) explicitly, factorised in terms of its roots:

c(∆(P), λ) = λn−3(λ− AP)(λ
2 + aλ+ b),

where AP is the area of polygon P . The final factor is a quadratic
which factorises as

(λ+ AP + Qi)(λ+ AP − Qi),

where Q is a, generally irrational, real number which will be

the subject of a future talk.
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