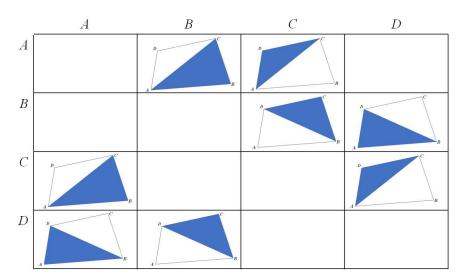
## A Matrix of Triangle Areas Part 2

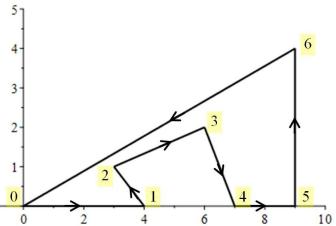


#### Table of contents

- 1. The triangle areas matrix
- 2. Properties of the matrix
  - 2.1 Rank
  - 2.2 Eigenvectors
  - 2.3 Characteristic polynomial

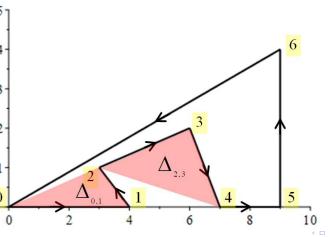
#### Triangles in polygons

Let P be a simple polygon on n vertices,  $0, 1, \ldots, n-1$ , oriented counterclockwise. We are interested in the areas of the triangles formed by joining vertices of P to 'opposite edges'.



#### Signed areas

Denote by  $\Delta_{ij}$  the area of the triangle on polygon vertices i, j, j+1, the numbering taken modulo n. This area is taken as positive or negative according to whether i, j, j+1, i has counterclockwise or clockwise orientation relative to the orientation of the polygon.



Left we have highlighted areas  $\Delta_{0,1}=2$  and  $\Delta_{2,3}=-7/2$ .

Note also  $\Delta_{0,2} = \Delta_{0,4} = 0$ .

#### The Delta matrix

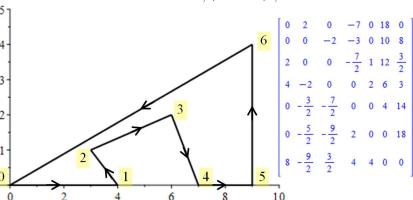
For an *n*-vertex polygon the  $\Delta_{ij}$  form an  $n \times n$  matrix.

The main and 1st lower diagonals are zero:

$$\Delta_{i,i}=0, \Delta_{i+1,i}=0.$$

The 1st upper diagonal equals the 2nd lower diagonal:

$$\Delta_{i,i+1} = \Delta_{i+2,i}$$
.



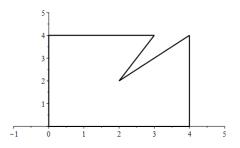
# Properties of the Delta matrix 1: Rank

| 0              | -2             | 2             | -4            | 8              | $\frac{3}{2}$  | 12 | 9              | $\frac{13}{2}$ | 8              | 0              | $\frac{21}{2}$ | $-\frac{7}{2}$ | 2             | -2            | 0              |
|----------------|----------------|---------------|---------------|----------------|----------------|----|----------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|----------------|
|                |                |               |               |                |                |    |                |                | 11 2           |                |                |                |               |               |                |
| -2             | 0              | 0             | -2            | 4              | $-\frac{1}{2}$ | 8  | $\frac{1}{2}$  | $\frac{17}{2}$ | 4              | 4              | $\frac{17}{2}$ | $\frac{1}{2}$  | 4             | 2             | 4              |
| -2             | 2              | 0             | 0             | $\frac{3}{2}$  | $-\frac{1}{2}$ | 5  | -1             | 8              | $\frac{3}{2}$  | $\frac{11}{2}$ | 6              | 3              | $\frac{9}{2}$ | $\frac{9}{2}$ | $\frac{11}{2}$ |
| -4             | 2              | -2            | 0             | 0              | $-\frac{5}{2}$ | 4  | $-\frac{7}{2}$ | $\frac{21}{2}$ | 0              | 8              | $\frac{13}{2}$ | $\frac{9}{2}$  | 6             | 6             | 8              |
| $-\frac{3}{2}$ | $\frac{7}{2}$  | $\frac{1}{2}$ | $\frac{3}{2}$ | 0              | 0              | 3  | $-\frac{3}{2}$ | 7              | 0              | 6              | 4              | $\frac{9}{2}$  | 9 2           | 6             | 6              |
| $-\frac{3}{2}$ | $\frac{11}{2}$ | 1/2           | $\frac{7}{2}$ | $-\frac{5}{2}$ | 0              | 0  | -3             | $\frac{13}{2}$ | $-\frac{5}{2}$ | 15 2           | $\frac{3}{2}$  | 7              | 5             | 17 2          | $\frac{15}{2}$ |
| $\frac{3}{2}$  | $\frac{13}{2}$ | $\frac{7}{2}$ | $\frac{9}{2}$ | $-\frac{3}{2}$ | 3              | 0  | 0              | 5 2            | $-\frac{3}{2}$ | $\frac{9}{2}$  | $-\frac{1}{2}$ | 6              | 3             | 15 2          | $\frac{9}{2}$  |
| 3              | 9              | 5             | 7             | $-\frac{7}{2}$ | $\frac{9}{2}$  | -3 | 0              | 0              | $-\frac{7}{2}$ | $\frac{9}{2}$  | -4             | 8              | $\frac{5}{2}$ | 19            | $\frac{9}{2}$  |
| $\frac{7}{2}$  | $\frac{13}{2}$ | 11 2          | $\frac{9}{2}$ | 0              | 5              | 1  | $\frac{5}{2}$  | 0              | 0              | 2              | -1             | $\frac{9}{2}$  | $\frac{3}{2}$ | 6             | 2              |

Robin Whitty

# Easy properties of $\Delta(P)$ the matrix of $\Delta_{i,j}$ s

- 1. The diagonal and 1st lower diagonal entries are zero.
- 2. The first upper diagonal is identical to the second lower diagonal, the same triangle areas being subtended from opposite directions. That is, for  $i=0,1,\ldots,n-1,$   $\Delta_{i,i+1}=\Delta_{i+2,i}.$
- 3. In row *i* the first and second upper diagonal entries sum to same as the first and second lower diagonal entries in row i+3. That is  $\Delta_{i,i+1}+\Delta_{i,i+2}=\Delta_{i+3,i}+\Delta_{i+3,i+1}$ .



| Γο | 8 | 0<br>4<br>0<br>0<br>-1<br>-4 | 1  | 6 | 0 | 1 |
|----|---|------------------------------|----|---|---|---|
| 0  | 0 | 4                            | -3 | 6 | 8 |   |
| 8  | 0 | 0                            | -1 | 0 | 8 |   |
| 4  | 4 | 0                            | 0  | 3 | 4 |   |
| 8  | 2 | -1                           | 0  | 0 | 6 |   |
| 8  | 8 | -4                           | 3  | 0 | 0 |   |

# Linear combinations of rows of $\Delta(P)$

A 
$$3 \times 3$$
 diagonal block of  $\Delta(P)$  has the following form

$$\left[\begin{array}{ccc} 0 & x & y \\ 0 & 0 & z \\ x & 0 & 0 \end{array}\right]$$

The Easy Properties extend this to the row immediately beneath:

$$\left[ 
\begin{array}{cccc}
0 & x & y \\
0 & 0 & z \\
x & 0 & 0 \\
x + y - z & z & 0
\end{array} 
\right]$$

Suppose  $x \neq 0$ . Write  $\alpha_1 = z/x$ ,  $\alpha_2 = -y/x$ ,  $\alpha_3 = 1 - \alpha_1 - \alpha_2$ . Then this extension is the linear combination

Row 4 = 
$$\alpha_1 \times \text{Row } 1 + \alpha_2 \times \text{Row } 2 + \alpha_3 \times \text{Row } 3$$

Surprisingly (to me) this same linear combination extends to the remainder of this same row.



# Less immediate property of $\Delta(P)$

The matrix  $\Delta(P)$  is determined by its first three rows. Specifically,  $\Delta(P)$  has rank 3.

| Γ | 0 | 8 | 0  | 1<br>-3<br>-1<br>0<br>0 | 6 | 0 |
|---|---|---|----|-------------------------|---|---|
|   | 0 | 0 | 4  | -3                      | 6 | 8 |
|   | 8 | 0 | 0  | -1                      | 0 | 8 |
|   | 4 | 4 | 0  | 0                       | 3 | 4 |
|   | 8 | 2 | -1 | 0                       | 0 | 6 |
| L | 8 | 8 | -4 | 3                       | 0 | 0 |

By the easy properties, a diagonal  $3 \times 3$  block determines the 3 entries immediately below.

As we have seen, we can write these 3 entries explicitly as a linear combination of the rows above.

And this same linear combination applies across the whole row.

Row 4 = 
$$\frac{z}{x} \times \text{Row } 1 - \frac{y}{x} \times \text{Row } 2$$
  
  $+ \frac{x + y - z}{x} \times \text{Row } 3$ ,

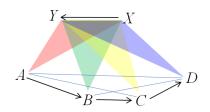
provided  $x \neq 0$ .



## A theorem about triangles

Suppose we have 6 points, A, B, C, D, X, Y, arranged in counterclockwise order in the plane. Using |ABC|, etc, to denote the area of the triangle on the points indicated, we have

$$|ABC| \times |XYD| + |ACD| \times |XYB| = |BCD| \times |XYA| + |ABD| \times |XYC|.$$



In the special case where the four triangles on base XY all had unit area this would just equate two ways of expressing the quadrilateral area |ABCD|. In fact it remains true in general.

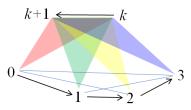
# Applying the triangles theorem to the $\Delta_{i,j}$ s

Without loss of generality take A, B, C, D to be the first four vertices, 0, 1, 2, 3, of polygon P. The triangle theorem becomes

$$\Delta_{0,1} \times |XY3| + \Delta_{0,2} \times |XY1| = \Delta_{1,2} \times |XY0| + \Delta_{3,0} \times |XY2|.$$

Further, taking X, Y to be a subsequent edge [k, k+1] of P, this becomes

$$\Delta_{0,1} \times \Delta_{3,k} + \Delta_{0,2} \times \Delta_{1,k} = \Delta_{1,2} \times \Delta_{0,k} + \Delta_{3,0} \times \Delta_{2,k}.$$



|                                          | ^              | ^              |       | ^              |  |
|------------------------------------------|----------------|----------------|-------|----------------|--|
| 0                                        | $\Delta_{0,1}$ | $\Delta_{0,2}$ | • • • | $\Delta_{0,k}$ |  |
| 0                                        | 0              | $\Delta_{1,2}$ | • • • | $\Delta_{1,k}$ |  |
| $\Delta_{0,1}$                           | 0              | 0              |       | $\Delta_{2,k}$ |  |
| $\Delta_{0,1}+\Delta_{0,2}-\Delta_{1,2}$ | $\Delta_{1,2}$ | 0              |       | $\Delta_{3,k}$ |  |
| ·                                        |                |                |       |                |  |

Rearranging, provided that  $\Delta_{0,1} \neq 0$ ,

$$\Delta_{3,k} = \alpha_1 \Delta_{0,k} + \alpha_2 \Delta_{1,k} + \alpha_3 \Delta_{2,k},$$

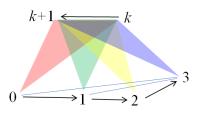
with the  $\alpha_i$  as on the earlier slide.



# Dealing with zero-area $\Delta_{i,j}$ s

If three consecutive polygon vertices are collinear then we have a zero area triangle.

E.g. here  $\Delta_{0,1}=0$  in the application of the triangle theorem, so we cannot write  $\Delta_{3,k}$  in terms of the three previous rows of the matrix.



$$\Delta_{0,1} \times \Delta_{3,k} + \Delta_{0,2} \times \Delta_{1,k} = \Delta_{1,2} \times \Delta_{0,k} + \Delta_{3,0} \times \Delta_{2,k}.$$

In fact, these three previous rows are found to be already linearly dependent:

$$0 = -\Delta_{0,2} \times \Delta_{1,k} + \Delta_{1,2} \times \Delta_{0,k} + \Delta_{3,0} \times \Delta_{2,k}.$$



# Properties of the Delta matrix 2: Eigenvectors

## Eigenvalues and eigenvectors

A complex number  $\lambda$  is an eigenvalue of square matrix X if, for some complex row vector v,

$$vX = \lambda v$$
  $v$  is a left eigenvector  $Xv^T = \lambda v^T$   $v^T$  is a right eigenvector

E.g. 
$$X = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ -2 & -2 & -2 \end{pmatrix}$$

Eigenvalues are 0 and  $1 \pm 2i$ .

Right eigenvectors are

$$\left(\begin{array}{c}1\\-2\\1\end{array}\right), \left(\begin{array}{c}(-1+i)/2\\(-2+i)/2\\1\end{array}\right), \left(\begin{array}{c}(-1-i)/2\\(-2-i)/2\\1\end{array}\right).$$



## A right eigenvector of $\Delta$

If all rows of a square matrix X have the same sum s then s is an eigenvalue of X and the all-ones column vector is a right eigenvector.

$$X\left(\begin{array}{c}1\\\vdots\\1\end{array}\right)=\left(\begin{array}{c}s\\\vdots\\s\end{array}\right)=s\left(\begin{array}{c}1\\\vdots\\1\end{array}\right).$$

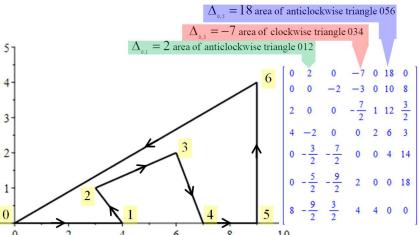
In the matrix  $\Delta(P)$  for a polygon P, the i-th row sum is  $\Delta_{i,i+1} + \ldots + \Delta_{i,i+n-2}$  (indexing modulo n). This sums a collection of triangles which partition the interior of P. Therefore all rows of  $\Delta(P)$  sum to  $A_P$ , the area of the polygon.

(This is not quite obvious, unless P is convex, because some of the triangles may lie partially outside the boundary of P. That the overall sum is  $A_P$  is the content of the Shoelace Formula for polygon area.)

Thus  $A_p$  is an eigenvalue of  $\Delta(P)$  with corresponding right eigenvector the all-ones vector.

#### Delta matrix: all-ones right eigenvector

Our example polygon has area 13.



## Some left eigenvectors of $\Delta$

Suppose rows  $i, \ldots i + k$  of a square matrix X are linearly dependent. This is the same as saying that summing these rows with the appropriate weights, say,  $\alpha_1, \ldots \alpha_k$ , will give the zero vector.

Then multiplying X on the left by the row vector  $v = (0, \dots, 0, \alpha_1, \dots, \alpha_k, 0, \dots, 0)$  will give a row of zeros. That is,  $vX = 0 \times v$ , so v is a left eigenvector corresponding to an eigenvalue of zero.

We have seen that  $\Delta(P)$ , for an n-vertex polygon P, has n-3 such dependencies. So zero is an eigenvalue of  $\Delta$  of multiplicity n-3. We can construct the corresponding left eigenvectors as shown earlier, making n-3 applications of the triangle theorem.

#### Delta matrix: zero left eigenvector

One of three zero left eigenvectors:

$$\alpha = \frac{(-1)}{4}$$

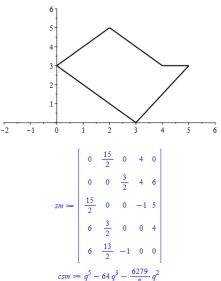
$$\alpha = \frac{(-3)}{4}$$

$$\alpha = 1 - \frac{(-1)}{4} - \frac{(3)}{4} - \frac{(3)}{4} = \frac{(3)}{4} - \frac{(3)}{4} - \frac{(3)}{4} = \frac{(3)}{4}$$

(What are the corresponding right eigenvectors?)



#### Properties of the Delta matrix 3: Characteristic equation



## The characteristic polynomial of $\Delta$

The eigenvalues of an  $n \times n$  matrix X are precisely the roots of the degree-n polynomial in  $\lambda$  defined as  $c(X,\lambda) = \det(\lambda I - X)$ . This is the **characteristic polynomial** of X.

We will use q instead of  $\lambda$  when talking about  $\Delta$  to distinguish it from the general case. From the previous slides we know we can almost write down  $c(\Delta(P),q)$  explicitly, factorised in terms of its roots:

$$c(\Delta(P),q)=q^{n-3}(q-A_P)(q^2+aq+b),$$

where  $A_P$  is the area of polygon P. The final factor is a quadratic in q which is our next objective!



#### Some bits of theory

The characteristic polynomial of an  $n \times n$  matrix X is

$$c(X,\lambda) = \det(\lambda I - X) = \begin{pmatrix} \lambda - x_{0,0} & -x_{0,1} & \cdots & -x_{0,n-1} \\ -x_{1,0} & \lambda - x_{1,1} & \cdots & & \\ & & \ddots & & \\ -x_{n-1,0} & & \cdots & \lambda - x_{n-1,n-1} \end{pmatrix}.$$

It has the form

$$c(X,\lambda)=a_0\lambda^n+a_1\lambda^{n-1}+\ldots+a_n,$$

where

- 1.  $a_0 = 1$  (i.e. c is monic);
- 2.  $a_1 = -(x_{0,0} + x_{1,1} + \ldots + x_{n-1,n-1}) = -\operatorname{Tr}(X);$
- 3.  $a_2 = \text{sum of all } 2 \times 2 \text{ principal minors of } X$ ;
- 4.  $a_n = (-1)^n \det(X)$ .



## Our quadratic: the q term

We have (writing  $\Delta$  and A for  $\Delta(P)$  and  $A_P$ , respectively):

$$c(\Delta,q)=q^{n-3}(q-A)(q^2+aq+b).$$

The  $q^{n-1}$  term is  $-Aq^{n-1} + aq^{n-1}$ .

This is equal to  $-\text{Tr}(\Delta) = 0$  (since  $\Delta_{i,i} = 0$  for all i).

So we have a = A and

$$c(\Delta, q) = q^{n-3}(q-A)(q^2 + Aq + b).$$

We would to know the value of *b*. In fact, we would like to specify the value of *b geometrically*.

## Our quadratic: the constant term b

In

$$c(\Delta, q) = q^{n-3}(q-A)(q^2 + Aq + b),$$

The coefficient of  $q^{n-2}$  is  $b-A^2$ . The theory tells us this is the sum of all  $2 \times 2$  principal minors of  $\Delta$ .

## Our quadratic: completely specified?

Summing the  $2\times 2$  principal minors along a row gives precisely  $-1\times$  the corresponding diagonal entry of  $\Delta^2$ . But each principal minor product will appear twice in the calculation of the whole diagonal of  $\Delta^2$ .

The coefficient of  $q^{n-2}$  in  $c(\Delta,q)$  is therefore  $-\frac{1}{2} \text{Tr}(\Delta^2)$ . That is  $b-A^2=-\frac{1}{2} \text{Tr}(\Delta^2)$ , and we have

$$c(\Delta,q)=q^{n-3}(q-A)\left(q^2+Aq+A^2-rac{1}{2}\mathsf{Tr}(\Delta^2)
ight).$$



#### Eigenvalues completely specified?

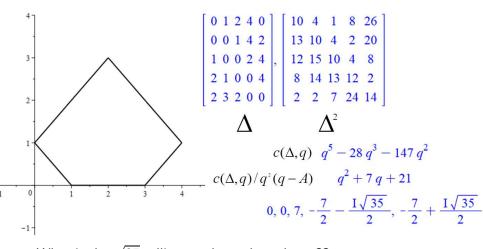
From  $c(\Delta,q)=q^{n-3}(q-A)\left(q^2+Aq+A^2-\frac{1}{2}{\rm Tr}(\Delta^2)\right)$ , The eigenvalues of  $\Delta$  may be directly calculated as

$$\overbrace{0,\ldots,0}^{n-3}, A, -\frac{A}{2} \pm \sqrt{2 \text{Tr}(\Delta^2) - 3A^2}.$$

However, we don't have the eigenvectors corresponding to the last two eigenvalues.

What is worse, unlike the first n-2 eigenvalues we have no geometric interpretation of the final two. What does it mean geometrically to sum products of pairs of triangle areas? Or to take the square of a matrix of triangle areas?

#### An example



What is the  $\sqrt{35}$  telling us about the polygon?? Thank you for sharing my frustration!

