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Triangles in polygons

Let P be a simple polygon on n vertices, 0, 1, . . . , n − 1, oriented
counterclockwise. We are interested in the areas of the triangles
formed by joining vertices of P to ‘opposite edges’.
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Signed areas

Denote by ∆ij the area of the triangle on polygon vertices i , j , j +1,
the numbering taken modulo n. This area is taken as positive or
negative according to whether i , j , j + 1, i has counterclockwise or
clockwise orientation relative to the orientation of the polygon.

Left we have
highlighted areas
∆0,1 = 2 and
∆2,3 = −7/2.

Note also ∆0,2 =
∆0,4 = 0.
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The Delta matrix
For an n-vertex polygon the ∆ij form an n × n matrix.
The main and 1st lower diagonals are zero:

∆i ,i = 0,∆i+1,i = 0.

The 1st upper diagonal equals the 2nd lower diagonal:

∆i ,i+1 = ∆i+2,i .
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Properties of the Delta matrix 1: Rank
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Easy properties of ∆(P) the matrix of ∆i ,js

1. The diagonal and 1st lower diagonal entries are zero.

2. The first upper diagonal is identical to the second lower
diagonal, the same triangle areas being subtended from
opposite directions. That is, for i = 0, 1, . . . , n − 1,
∆i ,i+1 = ∆i+2,i .

3. In row i the first and second upper diagonal entries sum to
same as the first and second lower diagonal entries in row
i + 3. That is ∆i ,i+1 +∆i ,i+2 = ∆i+3,i +∆i+3,i+1.
















0 8 0 1 6 0

0 0 4 −3 6 8

8 0 0 −1 0 8

4 4 0 0 3 4

8 2 −1 0 0 6

8 8 −4 3 0 0















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Linear combinations of rows of ∆(P)

A 3× 3 diagonal block of ∆(P)
has the following form





0 x y

0 0 z

x 0 0





The Easy Properties extend this
to the row immediately beneath:







0 x y

0 0 z

x 0 0
x + y − z z 0







Suppose x 6= 0. Write α1 = z/x , α2 = −y/x , α3 = 1− α1 − α2.
Then this extension is the linear combination

Row 4 = α1 × Row 1 + α2 × Row 2 + α3 × Row 3

Surprisingly (to me) this same linear combination extends to the
remainder of this same row.
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Less immediate property of ∆(P)

The matrix ∆(P) is determined by its first three rows. Specifically,
∆(P) has rank 3.

By the easy properties, a diagonal
3×3 block determines the 3 entries
immediately below.

As we have seen, we can write
these 3 entries explicitly as a linear
combination of the rows above.

And this same linear combination
applies across the whole row.

Row 4 =
z

x
× Row 1−

y

x
× Row 2

+
x + y − z

x
× Row 3,

provided x 6= 0.
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A theorem about triangles

Suppose we have 6 points, A,B ,C ,D,X ,Y , arranged in
counterclockwise order in the plane. Using |ABC |, etc, to denote
the area of the triangle on the points indicated, we have

|ABC |×|XYD|+|ACD|×|XYB | = |BCD|×|XYA|+|ABD|×|XYC |.

In the special case where the four
triangles on base XY all had unit
area this would just equate two
ways of expressing the quadrilateral
area |ABCD|. In fact it remains
true in general.
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Applying the triangles theorem to the ∆i ,js
Without loss of generality take A,B ,C ,D to be the first four
vertices, 0, 1, 2, 3, of polygon P . The triangle theorem becomes

∆0,1 × |XY 3|+∆0,2 × |XY 1| = ∆1,2 × |XY 0|+∆3,0 × |XY 2|.
Further, taking X ,Y to be a subsequent edge [k , k + 1] of P , this
becomes

∆0,1 ×∆3,k +∆0,2 ×∆1,k = ∆1,2 ×∆0,k +∆3,0 ×∆2,k .

0 ∆0,1 ∆0,2 · · · ∆0,k · · ·

0 0 ∆1,2 · · · ∆1,k · · ·

∆0,1 0 0 · · · ∆2,k · · ·

∆0,1 +∆0,2 −∆1,2 ∆1,2 0 · · · ∆3,k · · ·

Rearranging, provided that ∆0,1 6= 0,

∆3,k = α1∆0,k + α2∆1,k + α3∆2,k ,

with the αi as on the earlier slide.
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Dealing with zero-area ∆i ,js

If three consecutive polygon ver-
tices are collinear then we have a
zero area triangle.

E.g. here ∆0,1 = 0 in the applica-
tion of the triangle theorem, so we
cannot write ∆3,k in terms of the
three previous rows of the matrix.

∆0,1 ×∆3,k +∆0,2 ×∆1,k = ∆1,2 ×∆0,k +∆3,0 ×∆2,k .

In fact, these three previous rows are found to be already linearly
dependent:

0 = −∆0,2 ×∆1,k +∆1,2 ×∆0,k +∆3,0 ×∆2,k .
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Properties of the Delta matrix 2: Eigenvectors
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Eigenvalues and eigenvectors
A complex number λ is an eigenvalue of square matrix X if, for
some complex row vector v ,

vX = λv v is a left eigenvector

XvT = λvT vT is a right eigenvector

E.g. X =





1 2 3
2 3 4

−2 −2 −2





Eigenvalues are 0 and 1± 2i .

Right eigenvectors are





1
−2
1



 ,





(−1 + i)/2
(−2 + i)/2

1



 ,





(−1− i)/2
(−2− i)/2

1



 .
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A right eigenvector of ∆
If all rows of a square matrix X have the same sum s then s is an
eigenvalue of X and the all-ones column vector is a right
eigenvector.

X






1
...
1




 =






s
...
s




 = s






1
...
1




 .

In the matrix ∆(P) for a polygon P , the i -th row sum is
∆i ,i+1 + . . .+∆i ,i+n−2 (indexing modulo n). This sums a
collection of triangles which partition the interior of P . Therefore
all rows of ∆(P) sum to AP , the area of the polygon.
(This is not quite obvious, unless P is convex, because some of the

triangles may lie partially outside the boundary of P . That the overall

sum is AP is the content of the Shoelace Formula for polygon area.)

Thus Ap is an eigenvalue of ∆(P) with corresponding right
eigenvector the all-ones vector.
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Delta matrix: all-ones right eigenvector

Our example polygon has area 13.

Robin Whitty A Matrix of Triangle Areas



Some left eigenvectors of ∆

Suppose rows i , . . . i + k of a square matrix X are linearly
dependent. This is the same as saying that summing these rows
with the appropriate weights, say, α1, . . . αk , will give the zero
vector.

Then multiplying X on the left by the row vector
v = (0, . . . , 0, α1, . . . , αk , 0, . . . , 0) will give a row of zeros. That
is, vX = 0× v , so v is a left eigenvector corresponding to an
eigenvalue of zero.

We have seen that ∆(P), for an n-vertex polygon P , has n − 3
such dependencies. So zero is an eigenvalue of ∆ of multiplicity
n − 3. We can construct the corresponding left eigenvectors as
shown earlier, making n − 3 applications of the triangle theorem.
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Delta matrix: zero left eigenvector

One of three zero left eigenvectors:

(What are the corresponding right eigenvectors?)
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Properties of the Delta matrix 3: Characteristic equation
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The characteristic polynomial of ∆

The eigenvalues of an n× n matrix X are precisely the roots of the
degree-n polynomial in λ defined as c(X , λ) = det(λI − X ). This
is the characteristic polynomial of X .

We will use q instead of λ when talking about ∆ to distinguish it
from the general case. From the previous slides we know we can
almost write down c(∆(P), q) explicitly, factorised in terms of its
roots:

c(∆(P), q) = qn−3(q − AP)(q
2 + aq + b),

where AP is the area of polygon P . The final factor is a quadratic
in q which is our next objective!
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Some bits of theory

The characteristic polynomial of an n × n matrix X is

c(X , λ) = det(λI−X ) =








λ− x0,0 −x0,1 · · · −x0,n−1

−x1,0 λ− x1,1 · · ·
. . .

−xn−1,0 · · · λ− xn−1,n−1








.

It has the form

c(X , λ) = a0λ
n + a1λ

n−1 + . . .+ an,

where

1. a0 = 1 (i.e. c is monic);

2. a1 = −(x0,0 + x1,1 + . . .+ xn−1,n−1) = −Tr(X );

3. a2 = sum of all 2× 2 principal minors of X ;

4. an = (−1)n det(X ).
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Our quadratic: the q term

We have (writing ∆ and A for ∆(P) and AP , respectively):

c(∆, q) = qn−3(q − A)(q2 + aq + b).

The qn−1 term is −Aqn−1 + aqn−1.

This is equal to −Tr(∆) = 0 (since ∆i ,i = 0 for all i).

So we have a = A and

c(∆, q) = qn−3(q − A)(q2 + Aq + b).

We would to know the value of b. In fact, we would like to specify
the value of b geometrically.
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Our quadratic: the constant term b

In
c(∆, q) = qn−3(q − A)(q2 + Aq + b),

The coefficient of qn−2 is b − A2. The theory tells us this is the
sum of all 2× 2 principal minors of ∆.

Because the diag-
onal is all zeros,
each 2 × 2 princi-
pal minor is −1×
the product of a
row entry with the
diagonally opposite
column entry.
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Our quadratic: completely specified?

Summing the 2× 2 prin-
cipal minors along a row
gives precisely −1× the
corresponding diagonal
entry of ∆2. But each
principal minor product
will appear twice in the
calculation of the whole
diagonal of ∆2.

The coefficient of qn−2 in c(∆, q) is therefore −1
2
Tr(∆2). That is

b − A2 = −1
2
Tr(∆2), and we have

c(∆, q) = qn−3(q − A)

(

q2 + Aq + A2 − 1

2
Tr(∆2)

)

.
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Eigenvalues completely specified?

From c(∆, q) = qn−3(q − A)
(
q2 + Aq + A2 − 1

2
Tr(∆2)

)
, The

eigenvalues of ∆ may be directly calculated as

n−3
︷ ︸︸ ︷

0, . . . , 0,A,−A

2
±
√

2Tr(∆2)− 3A2.

However, we don’t have the eigenvectors corresponding to the last
two eigenvalues.

What is worse, unlike the first n − 2 eigenvalues we have no
geometric interpretation of the final two. What does it mean
geometrically to sum products of pairs of triangle areas? Or to
take the square of a matrix of triangle areas?
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An example

What is the
√
35 telling us about the polygon??

Thank you for sharing my frustration!
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